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Research question and motivation

I Majority of dynamic general equilibrium models: Firm (scale)
heterogeneity does not matter.

I Because some firms are so large, decisions of individual firms
can have aggregate implications

I 2004Q4: Microsoft issues $24 billion one-time dividend.
Accounts for 2.1% boost in personal income growth.

I 2000: Nokia accounts for half of Finish private R&D, 1.6
percentage points of GDP growth.

I Are these anecdotes exceptional or common?

I Question: To what extent are firm-level shocks responsible for
aggregate fluctuations?



Outline

I Some data
I Compustat: 1960 to present.

I Theoretical results and calibration
I The Central Limit Theorem is irrelevant when firm sizes are
fat-tailed

I The herfindahl index is a summary statistic for the importance
of firm-specific shocks.

I The granular residual



The firm size distribution in 1960
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The firm size distribution in 1970
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The firm size distribution in 1980
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The firm size distribution in 1990
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The firm size distribution in 2000
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The firm size distribution in 2010
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Sales Herfindahl of firms in Compustat
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Overview of the theoretical results

I If the firm size distribution is Pareto, we can show how the
dispersion of GDP growth decreases in economies with more
and more firms.

I Even if the firm size distribution is not Pareto, we can relate
the dispersion of GDP to:

I σ: the standard deviation of firm productivity growth rates.
I h: the HHI of firm sales
I a combination of other model parameters.



Hulten (1978)
What is the relationship between micro productivity growth and aggregate output growth?

I Economy is made up of n units (firms or industries)

I Utility= C − φ
φ+1L

φ+1
φ , where C ≡

∏
i

(
Ci
ξi

)ξi
I Production : Qi = Ai

(
Li
α

)α (
Mi
1−α

)1−α
I Intermediate input bundle: Mi =

∏
j

(
Mj→i
γji

)γji
I Market clearing: Qi = Ci +

∑
j Mi→j

I Write
I Pi as the Lagrange multiplier for the good i market-clearing
condition, and Si ≡ PiQi .

I W as the Lagrange multiplier for the labor market clearing
condition.

I Set C as the numeraire good: P ≡
∏
i (Pi )

ξi = 1



Hulten (1978)
Step 1: Solve for Total Labor Supply

Consider the problem of the representative consumer who is trying
to maximize:

C − φ

φ+ 1
L
φ+1
φ s.t. C = WL

Equilibrium C and L satisfy:

L = W φ

C = W φ+1 = L
φ+1
φ (1)



Hulten (1978)
Step 2: Solve for Prices

Consider the cost-minimization problem of firm/industry i .

logQi = logAi + α log
Li
α

+ (1− α)
∑
j

γji log
(

Mji

(1− α) γji

)

= logAi + α log
(
QiPi
W

)
+ (1− α)

∑
j

γji log
(
QiPi
Pj

)
Thus:

logPi = − logAi + α logW + (1− α)
∑
j

γji logPj

−−−→
logP =

(
I − ((1− α) Γ)′

)−1 (−−−→logA+ α logW
)

(2)



Hulten (1978)
Step 3: Write out sales in each industry

Using the market clearing conditions

Si = PiQi = PiCi +
∑
j

PiMi→j

Plugging in customers’factor demand curves and re-arranging:

Si − (1− α)
∑
j

γijSj = ξiC

−→
S
C

= (I − ((1− α) Γ))−1
−→
ξ



Hulten (1978)
Step 4: Write out total consumption and labor in terms of productivity

Plug Equation (2) into Equation (1)

−−−→
logP =

(
I − ((1− α) Γ)′

)−1 (−−−→logA+ α logW
)

=
(
I − ((1− α) Γ)′

)−1 (−−−→logA+
α

φ+ 1
logC

)
Use the fact that ξ′

−−−→
logP = 0 and

(
I − ((1− α) Γ)′

)−1
α1 = 1:

(φ+ 1) ξ′
(
I − ((1− α) Γ)′

)−1 −−→
logA = logC

Remember the equation for sales
−→
S ′

C
=
−→
ξ ′
(
I −

(
(1− α) Γ′

))−1
Thus

logC = (φ+ 1)

−→
S ′

C
−−→
logA and log L = φ

−→
S ′

C
−−→
logA



Hulten (1978)
The Main Results

1. Aggregate productivity is a weighted average of productivity
of the individual units:

Aagg ≡ log C
L

=

−→
S ′

C
−−→
logA

The sum of the weights is bigger than 1.
2. Total output and labor inputs each depend on aggregate
productivity and the labor supply elasticity

logC = (φ+ 1)Aagg and log L = φAagg

3. Combining (1) and (2)

σlog C = (φ+ 1) ·
∑
Si
C

[∑
i

(
Si
S

)2]1/2
σ = µ · h · σ,

where µ ≡ (φ+ 1) ·
∑ Si

C

I Calibration: h = 6%, σ = 12%, µ = 6⇒ σlog C = 4.3%



The Pareto Distribution

Let Si ≡ PiCi be a Pareto(ζ,x0) random variable.

P(S > x) =
(
x
x0

)−ζ
.

Some useful facts about the Pareto distribution:

I E [S ] = x0
ζ
ζ−1 if ζ > 1, ∞ otherwise

I E
[
S2
]

= (x0)
2 ζ
ζ−2 if ζ > 2, ∞ otherwise

I Sα is Pareto
(
ζ
α , (x0)

α
)
distributed.

I αS is Pareto (ζ, αx0) distributed.
I r th moment of the k th largest value in a sample of

N ≡ E [S rk :N ] = (x0)
r Γ
[
k− r

ζ

]
Γ[k ]

Γ[N+1]

Γ
(
N+1− r

ζ

) , if r > ζ.

I Many other facts in Gabaix (2009, Section 2)



Classic Central Limit Theorem

Suppose S1, S2, .... SN is a sequence of i.i.d. random variables
with E [Si ] = µ and Var[Si ] = σ2 <∞. Then, as N approaches
∞, √

N
σ

(∑
Si
N
− µ

)
→d N (0, 1)

"Compared to an economy with 10 firms, an economy with 10
million firms will have GDP growth with a standard deviation 0.1%
as large".

What if Var[Si ] =∞?



Central Limit Theorem with infinite variances
Suppose S1, S2, .... SN is a sequence of i.i.d. nonnegative random
variables with P(Si > x) = x−ζL (x) (where L (x) is a
slowly-varying function, and ζ < 2). Then(∑

i Si − bN
aN

)
→ L (ζ) , where

aN = inf
{
x : P (Si > x) ≤ 1

N

}
and bN = NE

[
Si · 1(Xi≤aN )

]
and L (ζ) is a Levy distribution with exponent ζ.
I A slowly-varying function, L (x) is one that satisfies
limx→∞

L(tx)
L(x) = 1 ∀ t > 0.

I If P(Si > x) =
(
x
x0

)−ζ
, then

aN = inf
{
x :
(
x
x0

)−ζ
≤ 1

N

}
= x0N1/ζ , bN = 0

I Thus N
1−1/ζ

x0

∑
Si
N → L (ζ)



Levy distribution

PDF of Levy distribution:
√

ζ
2π exp

{
− ζ
2x

}
x−3/2



Proposition 2

"Consider a series of island economies indexed by N. Economy N
has N firms whose growth rate volatility is σ and whose sizes
S1,..SN are independently drawn from a power law distribution."

P (S > x) = ax−ζ , with ζ ≥ 1.

As N →∞, GDP volatility follows

σGDP ∼
vζ
logN

σ for ζ = 1

σGDP ∼
vζ

N1−1/ζ
σ for ζ ∈ (1, 2)

σGDP ∼
vζ
N1/2

σ for ζ ≥ 2

When ζ ≥ 2, vζ is a constant; when ζ < 2, vζ is the square root of
a Levy distributed (with exponent ζ/2) random variable.



Intuition for Proposition 2

In our islands economy, σGDP = σh. Looking across economies
with different numbers of firms, how does h change as N changes?

Take P (S > x) = ax−ζ , and consider the case in which ζ ∈ (1, 2),
and a = 1.

E [Xk :N ]

NE [X ]
=

Γ
[
k − 1

ζ

]
(ζ − 1)

Γ [k] ζ

Γ [N]

Γ
(
N + 1− 1

ζ

)
→N→∞

Γ
[
k − 1

ζ

]
(ζ − 1)

Γ [k] ζ
N−(1−1/ζ)

Share of top K firms is proportional to N−(1−1/ζ) ⇒ h is
proportional to N−(1−1/ζ).



Proof of Proposition 2, Part 1

If ζ ≥ 2, the variance of Si is finite. Can apply the formula
σGDP = σh

h =
1
N1/2

[
N−1

∑
(Si )

2
]1/2

N−1
∑
Si

σGDP →
σ

N1/2
·
(
E
[
S2
])1/2

E [S ]



Proof of Proposition 2, Part 2
When ζ > 1, N−1

∑
Si → E [S ]

S2i has a power law exponent ζ/2

P
(

(Si )
2 > x

)
= ax−ζ/2

Use the CLT with infinite variances, if ζ > 1

N−2/ζ
∑

S2i →d L (ζ/2)

N1−1/ζh = N1−1/ζ
[
N−2/ζ

(∑
S2i
)]1/2

N−1
∑
Si

→d
(L (ζ/2))1/2

E [S ]

Putting the pieces together

σGDPN1−1/ζ = σhN1−1/ζ →d σ
(L (ζ/2))1/2

E [S ]

If ζ ≈ 1.05⇒ N1−1/ζ ≈ N0.05 ⇒ Compared to an economy with
10 firms, an economy with 10 million firms will have GDP growth
with a standard deviation about half as large.



Digression: Is the firm size distribution Pareto?

I With moderate sample size it’s diffi cult to distinguish between
Pareto distribution (which has infinite variance if ζ < 2) and
something like a lognormal distribution (for which regular CLT
applies).

I Find best fit, assuming firm sizes are distributed either Pareto
or lognormal.

I f (x) = ζ(x0)ζ

xζ+1 ⇒ log f (x) = log ζ + ζ log x0 − (ζ + 1) log x

I ∂ log L
∂ζ̂

=
∑n
i=1

1
ζ + log

( x0
x

)
= 0⇒ ζ̂ =

[
1
N

∑
log
(
x
x0

)]−1
Sample x̂0 ζ̂

80 2.32 0.87
90 5.62 1.00
95 11.96 1.10
99 60.75 2.52



Digression: Is the firm size distribution Pareto?
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Digression: Is the firm size distribution Pareto?
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The dispersion of growth rates decreases with size
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I log
(
σGrow

)
= κ0 − κ1log(size);

I κ1 ∈ [0.15, 0.25], compare to benchmark of perfect
correlations of shocks within firms (κ1 = 0) or no correlation
(κ1 = 1

2 )



The dispersion of growth rates decreases with size

Lee et al. (1998)



We can extend Proposition 2 to allow for firm size and
firm volatility to be related.

Consider a series of island economies indexed by N. Economy N

has N firms whose growth rate volatility is σfirm (S) = σ
(
S
x0

)−α
and whose sizes S1,..SN are independently drawn from a power law
distribution.

P (S > x) = x−ζ , with ζ ≥ 1.

If ζ > 1, the volatility of GDP, σ (Y ), is proportional to

N
−min

{
1
2 ,1−

1−α
ζ

}
.

If ζ ≈ 1.05 and α ≈ 1
6 ⇒ N1−

1−α
ζ ≈ N0.21 ⇒ Compared to an

economy with 10 firms, an economy with 10 million firms will have
GDP growth with a standard deviation about 5% as large.



Partial summary

I h = 6% and σ = 12% ⇒ A calibration of a simple "islands"
model implies that independent firm shocks can potentially
meaningfully contribute to GDP volatility

I Rest of the paper:
I Construct a measure of productivity shocks to individual firms
I Regress GDP growth against productivity shocks of the largest
firms.



Defining the granular residual

From before

log
Yt
Yt−1

∝
∑
i

Si ,t−1
Yit−1

log
(
Ait
Ai ,t−1

)
Define

Γt ≡
100∑
i=1

Si ,t−1
Yt−1

ε̂it ,

ε̂it ≡ zit − zi ,t−1 − (z̄It − z̄I ,t−1)

where zit = log
(

sales of i in year t
employees of i in year t

)
, and z̄It is the corresponding

average labor productivity in firm i’s industry, I .



On the granular residual

log
(

Ait
Ai,t−1

)
measures changes in TFP, not in labor productivity.

I For plants in the manufacturing sector these productivity
measures have pretty different patterns (Syverson 2004):

I 90-10 (75-25) difference of log labor productivity is roughly 1.4
(0.66)

I 90-10 (75-25) difference of log TFP is 0.7 (0.29)



GDP growth and the granular residual

Sample 1952-2008 1952-2014
Γt 2.8 2.9 3.7 2.9 2.9 3.9
Γt−1 3.1 3.4 3.1 3.4
Γt−2 2.1 2.3
Intercept 0.02 0.02 0.02 0.02 0.02 0.02
N 57 56 55 63 62 61
R2 0.14 0.32 0.40 0.12 0.27 0.36
R̃2 0.12 0.29 0.36 0.10 0.24 0.32



GDP growth and the granular residual
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Granular events

I 1970 Strike at GM (labor productivity down 18%)
I 1972 Ford and Chrsyler have a rush of subcompact sales
I 1983 Launch of IBM PC (labor productivity up 10%)



Predictive power of the granular residual

Intercept 0.015 0.019* 0.021*
Γt−1 3.5** 3.3**
Γt−2 1.2 2.3*
Monetaryt−1 -0.04 -0.05
Monetaryt−1 -0.02 0.04
Oilt−1 -8.7 · 10−5 -1.7 · 10−4
Oilt−2 -6.9 · 10−5 -1.2 · 10−4
3-month t-billt−1 -0.45 -0.41
3-month t-billt−2 0.43 0.39
Term Spreadt−1 0.38 0.40
Term Spreadt−2 0.27 -0.38
R̃2 0.19 0.19 0.34

I Oil: (Hamilton 2003): current vs. last year’s max oil price.
I Monetary policy shock: Residuals from FOMC decisions vs.
FOMC forecasts (Romer and Romer 2004)

I Term spread: 5 year bond yield - 3 month bond yield.



Notes on Carvalho and
Gabaix (2013): "The Great

Diversification and its Undoing"



The Great Moderation
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The Great Moderation and its Undoing
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Motivation and question

I Why did volatility of GDP growth decrease beginning around
1980? And why did volatility increase beginning around 2005?

I Previous answers to the first question:
I Stock and Watson (2003): It doesn’t seem to have to do with
better inventory management or more aggressive monetary
policy.

I Arias, Hansen, and Ohanian (2007): Aggregate TFP shocks
have become less volatile )

I Jaimovich and Siu (2009): Fewer young people (those with
more elastic labor supply) in the work force

I New answer in this paper: Industry composition affects
aggregate volatility.



Industries differ in their volatility
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Fundamental Volatility

I Reminder from our islands economy
I Suppose economy is made up of n units (firms or industries)
I logGDPt =

∑
i

Sit
GDPt

log (Ait)

I log
(
GDPt+1
GDPt

)
≈
∑

i
Sit
GDPt

log
(
Ai,t+1
Ait

)
I Suppose Ai,t+1

Ait
are i.i.d. across time and industries, with

standard deviation σi

SD
[
log
(
GDPt+1
GDPt

)]
≈
[∑

i

(
Sit
GDPt

) 1
2

(σi )
2

]1/2
I Potentially

I productivity shocks are correlated, have volatilities that change
over time.

I things besides industries’TFP change from one period to the
next



Fundamental Volatility

σFt =

[∑
i

(
Sit
GDPt

)2
(σi )

2

]1/2
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Outline

I Definitions and data sources
I TFP in each industry
I σGDP

I Fundamental volatility accounts for the break in GDP
volatility.

I Sources of fundamental volatility
I Fundamental volatility and GDP volatility in other countries



Industry TFP Volatility

I KLEMS data from Dale Jorgenson
(http://hdl.handle.net/1902.1/11155)

I For each industry×year define TFP growth as:

∆TFPit = log
(
yit+1
yit

)
− 1
2

(
skit + skit+1

)
log
(
kit+1
kit

)
− 1
2

(
s lit + s lit+1

)
log
(
lit+1
lit

)
− 1
2

(
smit + smit+1

)
log
(
mit+1
mit

)
where s lit (s

m
it , s

k
it) is industry i’s cost share of labor

(intermediate inputs, capital) at time t.
I σi ≡SD(∆TFPit)



GDP Volatility

Three measures:
1) Rolling standard deviation

σrollt = SD
(
yHPt−10, ...y

HP
t+10

)
, where

yHPt is deviation of log GDP from trend

2) Instantaneous standard deviation

∆ys = ψ + φ∆ys−1 + εs

σInstt ≡ 1
2

√
π

2

4∑
q=1

|ε̂t ,q |

3) σHPt is the HP smoothed version of σInstt



Fundamental Volatility accounts for the break in GDP
volatility.

LRT =

∏T
t=1960 f1 (ηt)

∏2008
T+1 f2 (ηt)∏2008

t=1960 f0 (ηt)

σinstYt = a+ ηt σinstYt = a+ bσFt + ηt

H0 No break in a No break in b
No break
in a or b

maxT LRT 26.50 8.32 8.64 8.91
Reject null? Yes No No No
Estimated
break date

1983 NA NA NA



Fundamental Volatility
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Sales weights: motor vehicles and petroleum
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Contribution to fundamental volatility: motor vehicles and
petroleum
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Sales weights: depository and nondepository financial
institutions
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Contribution to fundamental volatility: depository and
nondepository financial institutions
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Fundamental volatility tracks GDP volatility in other
countries
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Fundamental volatility tracks GDP volatility in other
countries
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Conclusion

Summary:

I GDP volatility changes over time.
I Volatility changes reflect changes in the importance of
different types of firms in the economy.

I Implies that firm/industry-level shocks are important for
aggregate volatility.

Next steps:

I To what extent are the economy’s shocks independent across
firms (or industries)?
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