Notes on Gabaix (2011): "The Granular Origins of Aggregate Fluctuations"

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Research question and motivation

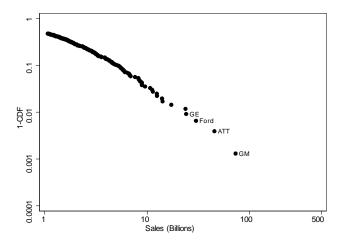
- Majority of dynamic general equilibrium models: Firm (scale) heterogeneity does not matter.
- Because some firms are so large, decisions of individual firms can have aggregate implications
 - ► 2004Q4: Microsoft issues \$24 billion one-time dividend. Accounts for 2.1% boost in personal income growth.
 - 2000: Nokia accounts for *half* of Finish private R&D, 1.6 percentage points of GDP growth.
 - Are these anecdotes exceptional or common?
- Question: To what extent are firm-level shocks responsible for aggregate fluctuations?

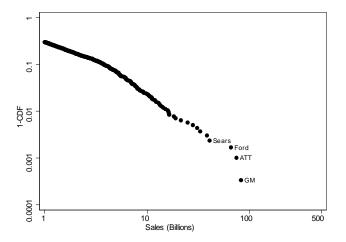
Outline

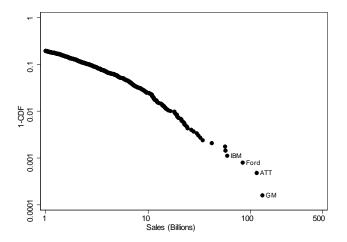
Some data

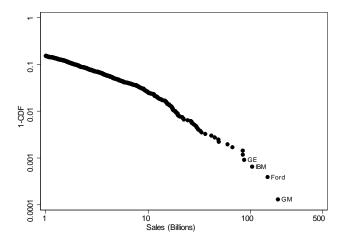
- Compustat: 1960 to present.
- Theoretical results and calibration
 - The Central Limit Theorem is irrelevant when firm sizes are fat-tailed
 - The herfindahl index is a summary statistic for the importance of firm-specific shocks.

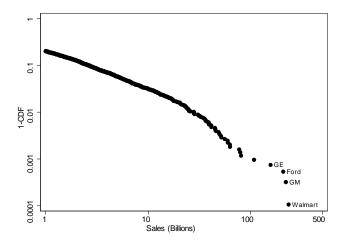
The granular residual



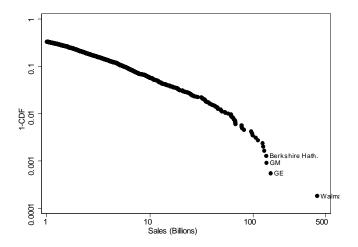






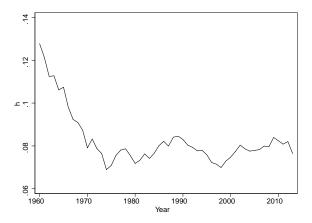


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ(?)



Sales Herfindahl of firms in Compustat

$$h = \left[\sum_{i} \left(\frac{S_i}{S}\right)^2\right]^{1/2}$$



Overview of the theoretical results

- If the firm size distribution is Pareto, we can show how the dispersion of GDP growth decreases in economies with more and more firms.
- Even if the firm size distribution is not Pareto, we can relate the dispersion of GDP to:
 - σ : the standard deviation of firm productivity growth rates.

- h: the HHI of firm sales
- a combination of other model parameters.

Hulten (1978)

What is the relationship between micro productivity growth and aggregate output growth?

- Economy is made up of n units (firms or industries)
- Utility= $C \frac{\phi}{\phi+1} L^{\frac{\phi+1}{\phi}}$, where $C \equiv \prod_{i} \left(\frac{C_{i}}{\xi_{i}}\right)^{\xi_{i}}$
- Production : $Q_i = A_i \left(\frac{L_i}{\alpha}\right)^{\alpha} \left(\frac{M_i}{1-\alpha}\right)^{1-\alpha}$
- Intermediate input bundle: $M_i = \prod_j \left(\frac{M_{j \to i}}{\gamma_{ji}} \right)^{\gamma_{ji}}$
- Market clearing: $Q_i = C_i + \sum_j M_{i \to j}$
- Write
 - P_i as the Lagrange multiplier for the good i market-clearing condition, and S_i ≡ P_iQ_i.
 - ► *W* as the Lagrange multiplier for the labor market clearing condition.

• Set C as the numeraire good: $P \equiv \prod_i (P_i)^{\xi_i} = 1$

Hulten (1978) Step 1: Solve for Total Labor Supply

Consider the problem of the representative consumer who is trying to maximize:

$$C - rac{\phi}{\phi+1}L^{rac{\phi+1}{\phi}}$$
 s.t. $C = WL$

Equilibrium C and L satisfy:

$$L = W^{\phi}$$
$$C = W^{\phi+1} = L^{\frac{\phi+1}{\phi}}$$
(1)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Hulten (1978) Step 2: Solve for Prices

Consider the cost-minimization problem of firm/industry *i*.

$$\log Q_{i} = \log A_{i} + \alpha \log \frac{L_{i}}{\alpha} + (1 - \alpha) \sum_{j} \gamma_{ji} \log \left(\frac{M_{ji}}{(1 - \alpha) \gamma_{ji}}\right)$$
$$= \log A_{i} + \alpha \log \left(\frac{Q_{i}P_{i}}{W}\right) + (1 - \alpha) \sum_{j} \gamma_{ji} \log \left(\frac{Q_{i}P_{i}}{P_{j}}\right)$$

Thus:

$$\log P_{i} = -\log A_{i} + \alpha \log W + (1 - \alpha) \sum_{j} \gamma_{ji} \log P_{j}$$

$$\overrightarrow{\log P} = \left(I - \left((1 - \alpha) \Gamma\right)'\right)^{-1} \left(-\overrightarrow{\log A} + \alpha \log W\right)$$
(2)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Hulten (1978) Step 3: Write out sales in each industry

Using the market clearing conditions

$$S_i = P_i Q_i = P_i C_i + \sum_j P_i M_{i \to j}$$

Plugging in customers' factor demand curves and re-arranging:

$$S_{i} - (1 - \alpha) \sum_{j} \gamma_{ij} S_{j} = \xi_{i} C$$
$$\frac{\overrightarrow{S}}{C} = (I - ((1 - \alpha) \Gamma))^{-1} \overrightarrow{\xi}$$

Hulten (1978)

Step 4: Write out total consumption and labor in terms of productivity Plug Equation (2) into Equation (1)

$$\overrightarrow{\log P} = \left(I - \left(\left(1 - \alpha\right)\Gamma\right)'\right)^{-1} \left(-\overrightarrow{\log A} + \alpha \log W\right)$$
$$= \left(I - \left(\left(1 - \alpha\right)\Gamma\right)'\right)^{-1} \left(-\overrightarrow{\log A} + \frac{\alpha}{\phi + 1}\log C\right)$$

Use the fact that $\xi' \overrightarrow{\log P} = 0$ and $(I - ((1 - \alpha) \Gamma)')^{-1} \alpha \mathbf{1} = \mathbf{1}$:

$$(\phi + 1) \xi' \left(I - ((1 - \alpha) \Gamma)' \right)^{-1} \overrightarrow{\log A} = \log C$$

Remember the equation for sales

$$\frac{\overrightarrow{S}'}{C} = \overrightarrow{\xi}' \left(I - \left((1 - \alpha) \, \Gamma' \right) \right)^{-1}$$

Thus

$$\log C = (\phi + 1) \frac{\overrightarrow{S'}}{C} \overrightarrow{\log A} \quad \text{and} \quad \log L = \phi \frac{\overrightarrow{S'}}{C} \overrightarrow{\log A}$$

Hulten (1978)

The Main Results

1. Aggregate productivity is a weighted average of productivity of the individual units:

$$A^{agg} \equiv \log \frac{C}{L} = \frac{\overrightarrow{S'}}{C} \overrightarrow{\log A}$$

The sum of the weights is bigger than 1.

2. Total output and labor inputs each depend on aggregate productivity and the labor supply elasticity

$$\log C = (\phi + 1) A^{agg}$$
 and $\log L = \phi A^{agg}$

3. Combining (1) and (2)

$$\sigma_{\log C} = (\phi + 1) \cdot \frac{\sum S_i}{C} \left[\sum_i \left(\frac{S_i}{S} \right)^2 \right]^{1/2} \sigma = \mu \cdot h \cdot \sigma,$$

where $\mu \equiv (\phi + 1) \cdot \sum \frac{S_i}{C}$

► Calibration: h = 6%, $\sigma = 12\%$, $\mu = 6 \Rightarrow \sigma_{\log C} = 4.3\%$

The Pareto Distribution

Let
$$S_i \equiv P_i C_i$$
 be a Pareto (ζ, x_0) random variable.
 $P(S > x) = \left(\frac{x}{x_0}\right)^{-\zeta}$.

Some useful facts about the Pareto distribution:

•
$$\mathbb{E}[S] = x_0 \frac{\zeta}{\zeta - 1}$$
 if $\zeta > 1$, ∞ otherwise

•
$$\mathbb{E}\left[S^2\right] = (x_0)^2 \frac{\zeta}{\zeta-2}$$
 if $\zeta > 2$, ∞ otherwise

•
$$S^{\alpha}$$
 is Pareto $\left(\frac{\zeta}{\alpha}, (x_0)^{\alpha}\right)$ distributed.

•
$$\alpha S$$
 is Pareto (ζ , αx_0) distributed.

•
$$r^{th}$$
 moment of the k^{th} largest value in a sample of $N \equiv \mathbb{E}\left[S_{k:N}^r\right] = (x_0)^r \frac{\Gamma\left[k - \frac{r}{\zeta}\right]}{\Gamma[k]} \frac{\Gamma[N+1]}{\Gamma\left(N+1 - \frac{r}{\zeta}\right)}$, if $r > \zeta$.

Many other facts in Gabaix (2009, Section 2)

Classic Central Limit Theorem

Suppose S_1, S_2, \dots, S_N is a sequence of i.i.d. random variables with $\mathbb{E}[S_i] = \mu$ and $\operatorname{Var}[S_i] = \sigma^2 < \infty$. Then, as N approaches ∞ ,

$$\frac{\sqrt{N}}{\sigma} \left(\frac{\sum S_i}{N} - \mu \right) \to_{\mathsf{d}} \mathcal{N}(0, 1)$$

"Compared to an economy with 10 firms, an economy with 10 million firms will have GDP growth with a standard deviation 0.1% as large".

What if $Var[S_i] = \infty$?

Central Limit Theorem with infinite variances

Suppose S_1 , S_2 , ..., S_N is a sequence of i.i.d. nonnegative random variables with $P(S_i > x) = x^{-\zeta} L(x)$ (where L(x) is a *slowly-varying function*, and $\zeta < 2$). Then

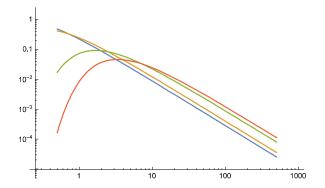
$$\left(\frac{\sum_{i} S_{i} - b_{N}}{a_{N}}\right) \to \mathcal{L}(\zeta) \text{, where}$$
$$a_{N} = \inf \left\{ x : P\left(S_{i} > x\right) \leq \frac{1}{N} \right\}$$
and $b_{N} = N\mathbb{E}\left[S_{i} \cdot 1_{\left(X_{i} \leq a_{N}\right)}\right]$

and $\mathcal{L}(\zeta)$ is a *Levy distribution* with exponent ζ .

A slowly-varying function, L(x) is one that satisfies lim_{x→∞} L(tx)/L(x) = 1 ∀ t > 0.
If P(S_i > x) = (x/x₀)^{-ζ}, then a_N = inf {x : (x/x₀)^{-ζ} ≤ 1/N} = x₀N^{1/ζ}, b_N = 0
Thus M^{1-1/ζ}/x₀ ΣS_i/N → L(ζ)

Levy distribution

PDF of Levy distribution: $\sqrt{\frac{\zeta}{2\pi}} \exp\left\{-\frac{\zeta}{2x}\right\} x^{-3/2}$



<ロト <回ト < 注ト < 注ト

æ

Proposition 2

"Consider a series of island economies indexed by N. Economy N has N firms whose growth rate volatility is σ and whose sizes $S_1,...,S_N$ are independently drawn from a power law distribution."

$$P(S > x) = ax^{-\zeta}$$
, with $\zeta \ge 1$.

As $N \to \infty$, GDP volatility follows

$$\begin{array}{ll} \sigma_{GDP} & \sim & \frac{v_{\zeta}}{\log N} \sigma \, \, \text{for} \, \, \zeta = 1 \\ \sigma_{GDP} & \sim & \frac{v_{\zeta}}{N^{1-1/\zeta}} \sigma \, \, \text{for} \, \, \zeta \in (1,2) \\ \sigma_{GDP} & \sim & \frac{v_{\zeta}}{N^{1/2}} \sigma \, \, \text{for} \, \, \zeta \geq 2 \end{array}$$

When $\zeta \geq 2$, v_{ζ} is a constant; when $\zeta < 2$, v_{ζ} is the square root of a Levy distributed (with exponent $\zeta/2$) random variable.

Intuition for Proposition 2

In our islands economy, $\sigma_{GDP} = \sigma h$. Looking across economies with different numbers of firms, how does h change as N changes?

Take $P(S > x) = ax^{-\zeta}$, and consider the case in which $\zeta \in (1, 2)$, and a = 1.

$$\frac{\mathbb{E}\left[X_{k:N}\right]}{N\mathbb{E}\left[X\right]} = \frac{\Gamma\left[k - \frac{1}{\zeta}\right]\left(\zeta - 1\right)}{\Gamma\left[k\right]\zeta} \frac{\Gamma\left[N\right]}{\Gamma\left(N + 1 - \frac{1}{\zeta}\right)}$$
$$\rightarrow_{N \to \infty} \frac{\Gamma\left[k - \frac{1}{\zeta}\right]\left(\zeta - 1\right)}{\Gamma\left[k\right]\zeta} N^{-(1 - 1/\zeta)}$$

Share of top K firms is proportional to $N^{-(1-1/\zeta)} \Rightarrow h$ is proportional to $N^{-(1-1/\zeta)}$.

Proof of Proposition 2, Part 1

If $\zeta \geq 2$, the variance of S_i is finite. Can apply the formula $\sigma_{GDP} = \sigma h$

$$h = \frac{1}{N^{1/2}} \frac{\left[N^{-1} \sum (S_i)^2\right]^{1/2}}{N^{-1} \sum S_i}$$
$$\sigma_{GDP} \to \frac{\sigma}{N^{1/2}} \cdot \frac{\left(\mathbb{E}\left[S^2\right]\right)^{1/2}}{\mathbb{E}\left[S\right]}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proof of Proposition 2, Part 2

When $\zeta > 1$, $N^{-1} \sum S_i \to \mathbb{E}[S]$ S_i^2 has a power law exponent $\zeta/2$

$$P\left((S_i)^2 > x\right) = ax^{-\zeta/2}$$

Use the CLT with infinite variances, if $\zeta > 1$

$$N^{-2/\zeta} \sum S_i^2 \to_d \mathcal{L}(\zeta/2)$$
$$N^{1-1/\zeta} h = N^{1-1/\zeta} \frac{\left[N^{-2/\zeta} \left(\sum S_i^2\right)\right]^{1/2}}{N^{-1} \sum S_i} \to_d \frac{\left(\mathcal{L}(\zeta/2)\right)^{1/2}}{\mathbb{E}[S]}$$

Putting the pieces together

$$\sigma_{GDP} N^{1-1/\zeta} = \sigma h N^{1-1/\zeta} \to_d \sigma \frac{(\mathcal{L}(\zeta/2))^{1/2}}{\mathbb{E}[S]}$$

If $\zeta \approx 1.05 \Rightarrow N^{1-1/\zeta} \approx N^{0.05} \Rightarrow$ Compared to an economy with 10 firms, an economy with 10 million firms will have GDP growth with a standard deviation about half as large.

Digression: Is the firm size distribution Pareto?

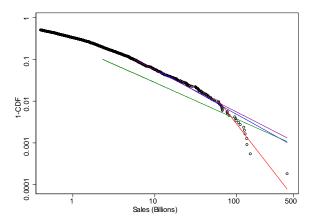
- With moderate sample size it's difficult to distinguish between Pareto distribution (which has infinite variance if ζ < 2) and something like a lognormal distribution (for which regular CLT applies).
- Find best fit, assuming firm sizes are distributed either Pareto or lognormal.

•
$$f(x) = \frac{\zeta(x_0)^{\zeta}}{x^{\zeta+1}} \Rightarrow \log f(x) = \log \zeta + \zeta \log x_0 - (\zeta+1) \log x$$

•
$$\frac{\partial \log \mathcal{L}}{\partial \hat{\zeta}} = \sum_{i=1}^{n} \frac{1}{\zeta} + \log \left(\frac{x_0}{x}\right) = 0 \Rightarrow \hat{\zeta} = \left[\frac{1}{N} \sum \log \left(\frac{x}{x_0}\right)\right]^{-1}$$

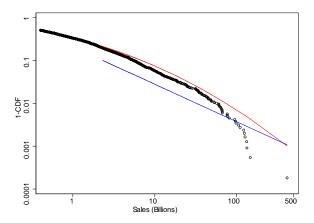
Sample	\hat{x}_0	$\hat{\zeta}$	
80	2.32	0.87	
90	5.62	1.00	
95	11.96	1.10	
99	60.75	2.52	

Digression: Is the firm size distribution Pareto?



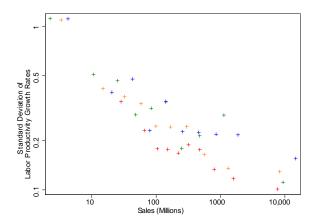
▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > → 臣 = ∽ 9 Q (?)

Digression: Is the firm size distribution Pareto?



▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > → 臣 = ∽ 9 Q (?)

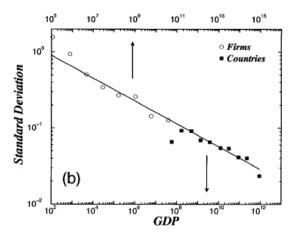
The dispersion of growth rates decreases with size



- $\log(\sigma^{\text{Grow}}) = \kappa_0 \kappa_1 \log(\text{size});$
- κ₁ ∈ [0.15, 0.25], compare to benchmark of perfect correlations of shocks within firms (κ₁ = 0) or no correlation (κ₁ = ¹/₂)

The dispersion of growth rates decreases with size

Lee et al. (1998)



◆ロト ◆昼 ▶ ◆臣 ▶ ◆臣 ● ○ ○ ○ ○

We can extend Proposition 2 to allow for firm size and firm volatility to be related.

Consider a series of island economies indexed by *N*. Economy *N* has *N* firms whose growth rate volatility is $\sigma^{\text{firm}}(S) = \sigma \left(\frac{S}{x_0}\right)^{-\alpha}$ and whose sizes $S_1, ..., S_N$ are independently drawn from a power law distribution.

$$P(S > x) = x^{-\zeta}$$
, with $\zeta \ge 1$.

If $\zeta > 1$, the volatility of GDP, $\sigma(Y)$, is proportional to $N^{-\min\left\{\frac{1}{2},1-\frac{1-\alpha}{\zeta}\right\}}$. If $\zeta \approx 1.05$ and $\alpha \approx \frac{1}{6} \Rightarrow N^{1-\frac{1-\alpha}{\zeta}} \approx N^{0.21} \Rightarrow$ Compared to an economy with 10 firms, an economy with 10 million firms will have GDP growth with a standard deviation about 5% as large.

Partial summary

- h = 6% and σ = 12% ⇒ A calibration of a simple "islands" model implies that independent firm shocks can potentially meaningfully contribute to GDP volatility
- Rest of the paper:
 - Construct a measure of productivity shocks to individual firms
 - Regress GDP growth against productivity shocks of the largest firms.

Defining the granular residual

From before

$$\log rac{Y_t}{Y_{t-1}} \propto \sum_i rac{S_{i,t-1}}{Y_{it-1}} \log \left(rac{\mathcal{A}_{it}}{\mathcal{A}_{i,t-1}}
ight)$$

Define

$$\Gamma_t \equiv \sum_{i=1}^{100} \frac{S_{i,t-1}}{Y_{t-1}} \hat{\varepsilon}_{it},$$
$$\hat{\varepsilon}_{it} \equiv z_{it} - z_{i,t-1} - (\bar{z}_{lt} - \bar{z}_{l,t-1})$$

where $z_{it} = \log \left(\frac{\text{sales of } i \text{ in year } t}{\text{employees of } i \text{ in year } t} \right)$, and \overline{z}_{It} is the corresponding average labor productivity in firm i's industry, I.

On the granular residual

 $\log\left(\frac{A_{it}}{A_{i,t-1}}\right)$ measures changes in TFP, not in labor productivity.

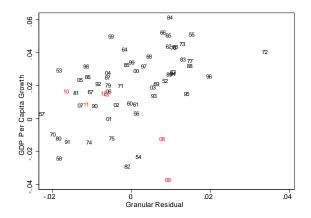
- For plants in the manufacturing sector these productivity measures have pretty different patterns (Syverson 2004):
 - 90-10 (75-25) difference of log labor productivity is roughly 1.4 (0.66)

▶ 90-10 (75-25) difference of log TFP is 0.7 (0.29)

GDP growth and the granular residual

Sample	1952-2008			1952-2014		
Γ _t	2.8	2.9	3.7	2.9	2.9	3.9
Γ_{t-1}		3.1	3.4		3.1	3.4
Γ_{t-2}			2.1			2.3
Intercept	0.02	0.02	0.02	0.02	0.02	0.02
Ν	57	56	55	63	62	61
R^2	0.14	0.32	0.40	0.12	0.27	0.36
$ ilde{R}^2$	0.12	0.29	0.36	0.10	0.24	0.32

GDP growth and the granular residual



Granular events

- 1970 Strike at GM (labor productivity down 18%)
- 1972 Ford and Chrsyler have a rush of subcompact sales

э

1983 Launch of IBM PC (labor productivity up 10%)

Predictive power of the granular residual

Intercept	0.015	0.019*	0.021*
Γ_{t-1}	3.5**		3.3**
Γ_{t-2}	1.2		2.3*
$Monetary_{t-1}$		-0.04	-0.05
$Monetary_{t-1}$		-0.02	0.04
Oil_{t-1}		$-8.7 \cdot 10^{-5}$	$-1.7 \cdot 10^{-4}$
Oil_{t-2}		$-6.9 \cdot 10^{-5}$	$-1.2 \cdot 10^{-4}$
3-month t-bill $_{t-1}$		-0.45	-0.41
3-month t-bill $_{t-2}$		0.43	0.39
Term Spread $_{t-1}$		0.38	0.40
Term Spread $_{t-2}$		0.27	-0.38
\tilde{R}^2	0.19	0.19	0.34

- ► Oil: (Hamilton 2003): current vs. last year's max oil price.
- Monetary policy shock: Residuals from FOMC decisions vs. FOMC forecasts (Romer and Romer 2004)

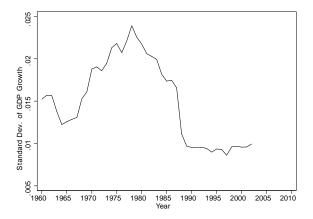
< = ► = <> < <>

Term spread: 5 year bond yield - 3 month bond yield.

Notes on Carvalho and Gabaix (2013): "The Great Diversification and its Undoing"

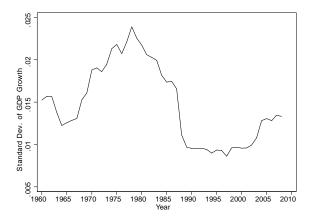
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Great Moderation



▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

The Great Moderation and its Undoing



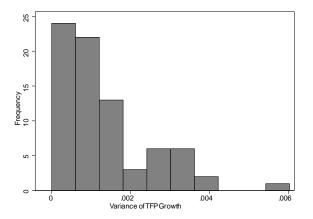
▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

Motivation and question

- Why did volatility of GDP growth decrease beginning around 1980? And why did volatility increase beginning around 2005?
- Previous answers to the first question:
 - Stock and Watson (2003): It *doesn't* seem to have to do with better inventory management or more aggressive monetary policy.
 - Arias, Hansen, and Ohanian (2007): Aggregate TFP shocks have become less volatile)
 - Jaimovich and Siu (2009): Fewer young people (those with more elastic labor supply) in the work force

 New answer in this paper: Industry composition affects aggregate volatility.

Industries differ in their volatility



◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへ(?)

Fundamental Volatility

- Reminder from our islands economy
 - Suppose economy is made up of n units (firms or industries)

 Suppose ^{A_{i,t+1}}/_{A_{it}} are i.i.d. across time and industries, with standard deviation σ_i

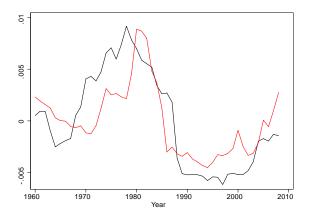
$$\operatorname{SD}\left[\log\left(\frac{GDP_{t+1}}{GDP_t}\right)\right] \approx \left[\sum_{i} \left(\frac{S_{it}}{GDP_t}\right)^{\frac{1}{2}} (\sigma_i)^2\right]^{1/2}$$

Potentially

- productivity shocks are correlated, have volatilities that change over time.
- things besides industries' TFP change from one period to the next

Fundamental Volatility

$$\sigma_{Ft} = \left[\sum_{i} \left(\frac{S_{it}}{GDP_t}\right)^2 (\sigma_i)^2\right]^{1/2}$$



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outline

- Definitions and data sources
 - TFP in each industry
 - σ_{GDP}
- Fundamental volatility accounts for the break in GDP volatility.
- Sources of fundamental volatility
- Fundamental volatility and GDP volatility in other countries

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Industry TFP Volatility

- KLEMS data from Dale Jorgenson (http://hdl.handle.net/1902.1/11155)
- ► For each industry×year define TFP growth as:

$$\begin{split} \Delta \textit{TFP}_{it} &= \log\left(\frac{y_{it+1}}{y_{it}}\right) \\ &- \frac{1}{2}\left(s_{it}^k + s_{it+1}^k\right)\log\left(\frac{k_{it+1}}{k_{it}}\right) \\ &- \frac{1}{2}\left(s_{it}^l + s_{it+1}^l\right)\log\left(\frac{l_{it+1}}{l_{it}}\right) \\ &- \frac{1}{2}\left(s_{it}^m + s_{it+1}^m\right)\log\left(\frac{m_{it+1}}{m_{it}}\right) \end{split}$$

where $s_{it}^{l}(s_{it}^{m}, s_{it}^{k})$ is industry *i*'s cost share of labor (intermediate inputs, capital) at time *t*.

• $\sigma_i \equiv SD(\Delta TFP_{it})$

GDP Volatility

Three measures:

1) Rolling standard deviation

$$\sigma_t^{roll} = SD\left(y_{t-10}^{HP}, ..., y_{t+10}^{HP}\right), \text{ where}$$
$$y_t^{HP} \text{ is deviation of log GDP from trend$$

2) Instantaneous standard deviation

$$\Delta y_s = \psi + \phi \Delta y_{s-1} + \epsilon_s$$
$$\sigma_t^{lnst} \equiv \frac{1}{2} \sqrt{\frac{\pi}{2}} \sum_{q=1}^4 |\hat{\epsilon}_{t,q}|$$

3) σ_t^{HP} is the HP smoothed version of σ_t^{Inst}

Fundamental Volatility accounts for the break in GDP volatility.

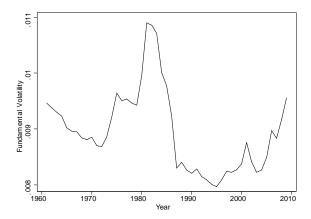
$$LR_{T} = \frac{\prod_{t=1960}^{T} f_{1}(\eta_{t}) \prod_{T=1}^{2008} f_{2}(\eta_{t})}{\prod_{t=1960}^{2008} f_{0}(\eta_{t})}$$

	$\sigma_{Yt}^{inst} = \mathbf{a} + \eta_t$		$\sigma_{Yt}^{inst} = \mathbf{a} + \mathbf{b}\sigma_{Ft} + \eta_t$	
H ₀	No break in <i>a</i>		No break in <i>b</i>	No break
110				in <i>a</i> or <i>b</i>
$\max_T LR_T$	26.50	8.32	8.64	8.91
Reject null?	Yes	No	No	No
Estimated	1983	NA	NA	NA
break date				

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Fundamental Volatility

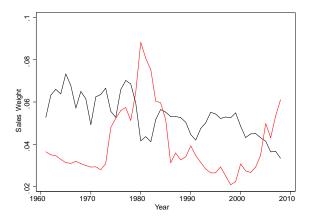
$$\sigma_{Ft} = \left[\sum_{i} \left(\frac{S_{it}}{GDP_t}\right)^2 (\sigma_i)^2\right]^{1/2}$$



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Sales weights: motor vehicles and petroleum

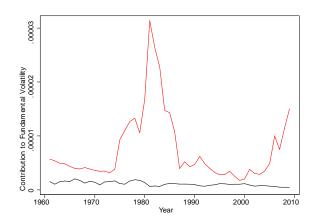
$$\sigma_{Ft} = \left[\sum_{i} \left(\frac{S_{it}}{GDP_t}\right)^2 (\sigma_i)^2\right]^{1/2}$$



▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Contribution to fundamental volatility: motor vehicles and petroleum

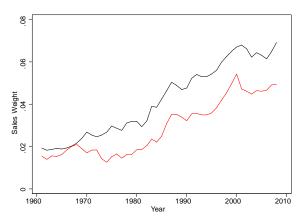
$$\sigma_{Ft} = \left[\sum_{i} \left(\frac{S_{it}}{GDP_t}\right)^2 (\sigma_i)^2\right]^{1/2}$$



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

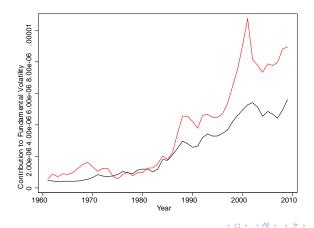
Sales weights: depository and nondepository financial institutions

$$\sigma_{Ft} = \left[\sum_{i} \left(\frac{S_{it}}{GDP_t}\right)^2 (\sigma_i)^2\right]^{1/2}$$

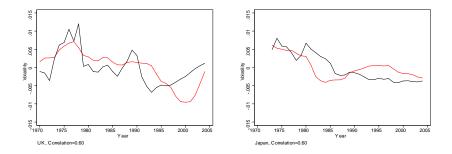


Contribution to fundamental volatility: depository and nondepository financial institutions

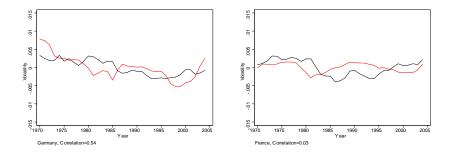
$$\sigma_{Ft} = \left[\sum_{i} \left(\frac{S_{it}}{GDP_t}\right)^2 (\sigma_i)^2\right]^{1/2}$$



Fundamental volatility tracks GDP volatility in other countries



Fundamental volatility tracks GDP volatility in other countries



Conclusion

Summary:

- ► GDP volatility changes over time.
- Volatility changes reflect changes in the importance of different types of firms in the economy.
 - Implies that firm/industry-level shocks are important for aggregate volatility.

Next steps:

To what extent are the economy's shocks independent across firms (or industries)?