Problem Set 5: Due Wednesday, December 3.

Problem 1

In this problem, we will work through the problem of a firm that invests, but faces different prices in buying versus selling the investment good. At the start of the period t our firm is going to have capital k and productivity A. Its choice is over k^{\prime}, how much capital to have at the beginning of the following period. Assume that the value function of the firm is given by:

$$
\begin{align*}
\hat{V}(A, k)= & \max _{k^{\prime}} \frac{r}{\alpha(1+r)} A^{1-\alpha}\left(k^{\prime}\right)^{\alpha}-\left(k^{\prime}-k\right)+\mathbf{1}_{k^{\prime}<k}\left(1-p_{s}\right)\left(k^{\prime}-k\right) \tag{1}\\
& +\frac{1}{1+r} \mathbb{E}\left[\hat{V}\left(A^{\prime}, k^{\prime}\right)\right]
\end{align*}
$$

Note that, according to this formulation, capital is installed instantaneously (there is no one-period lag), and there is no depreciation. Also, $p_{s}<1$ is the price at which the firm can sell the capital good, and 1 is the price at which the firm can buy the capital good. Finally, $\frac{1}{1+r}$ is the discount factor.

1. Let $z \equiv \frac{k}{A}, z^{\prime} \equiv \frac{k^{\prime}}{A}, \gamma \equiv \frac{A^{\prime}}{A}$, and $V(A, z) \equiv \hat{V}(A, A z)$. Show that, according to these definitions, Equation (1) is equivalent to

$$
\begin{equation*}
V(A, z)=\max _{z^{\prime}} \frac{r}{\alpha(1+r)} A\left(z^{\prime}\right)^{\alpha}+\left(z-z^{\prime}\right) A+\mathbf{1}_{k^{\prime}<k}\left(1-p_{s}\right) A\left(z^{\prime}-z\right)+\frac{1}{1+r} \mathbb{E}\left[V\left(\gamma A, \frac{z^{\prime}}{\gamma}\right)\right] \tag{2}
\end{equation*}
$$

2. Argue why V is homogeneous of degree 1 in A. Using this fact, and the definition $v(z) \equiv \frac{V(A, z)}{A}$, write out the investment problem of the firm in terms of a single-state value function. ${ }^{1}$
3. Assume $\log \gamma$ (the productivity growth rate) is Δ with probability $\pi, 0$ with probability $(1-2 \pi)$, and $-\Delta$ with probability π. Assume also that $\pi e^{-\Delta}+(1-2 \pi)+\pi e^{\Delta}<1+r$. Use the assumption on the values that γ can possibly take to write the value function $v(z)$ in terms of $v\left(z^{\prime} e^{\Delta}\right), v\left(z^{\prime}\right)$, and $v\left(z^{\prime} e^{-\Delta}\right)$.

[^0]4. Conjecture that there is a region of inaction that has endpoints \underline{z} and \bar{z}, and that outside of the region of inaction the optimal policy is to go to the closest endpoint. In other words, conjecture that there exists two numbers $\underline{z}<\bar{z}$ such that if $z \in[\underline{z}, \bar{z}]$ then $z^{\prime}=z$; if $z>\bar{z}$ then $z^{\prime}=\bar{z}$; and that if $z<\underline{z}$ then $z^{\prime}=\underline{z}$. Use this conjecture, and your answer to part 3 , to re-write your value function $v(z)$, for now just for the z within the inaction region (where $z \in[\underline{z}, \bar{z}]$).
5. Verify that the solution to your answer to part 4 takes the form $v\left(z ; c_{1}, c_{2}\right)=\kappa z^{\alpha}+$ $c_{1} z^{\rho_{1}}+c_{2} z^{\rho_{2}}$ where $\kappa=r\left[\alpha r+2 \alpha \pi-e^{(1-\alpha) \Delta} \alpha \pi-\alpha \pi e^{-(1-\alpha) \Delta}\right]^{-1}$; and ρ_{1} and ρ_{2} are the two roots of the equation $\pi e^{-(1-\rho) \Delta}+(r-2 \pi)+\pi e^{(1-\rho) \Delta}=0,{ }^{2}$ and where c_{1} and c_{2} are two constants which we will solve for.
6. Maintain our conjecture that $z^{\prime}=\bar{z}$ if $z>\bar{z}$. Explain why $\frac{\partial v\left(z ; c_{1}, c_{2}\right)}{\partial z}=p_{s} \forall z \geq \bar{z}$. Hint: It should be easy to argue, just with words, why $\frac{\partial v\left(\bar{z} ; c_{1}, c_{2}\right)}{\partial z}=p_{s}$. To get the derivative of the value function for $z>\bar{z}$, start by writing $v(\bar{z})$ and $v(z)$ for an arbitrary $z>\bar{z}$, then take the difference between these two value functions.
7. Using the same logic, explain why $\frac{\partial v\left(z ; c_{1}, c_{2}\right)}{\partial z}=1 \forall z \leq \underline{z}$. The equations that you've written in parts 6 and 7 are called the smooth pasting conditions.
8. So far we have just taken \underline{z} and \bar{z} as given, not explaining how they are determined. Now suppose that \underline{z} and \bar{z} are chosen optimally (instead of being dictated by some arbitrary rule). From parts 6 and 7 , we know that
$$
\frac{\partial v\left(\bar{z} ; c_{1}, c_{2}\right)}{\partial z}=p_{s} ; \quad \frac{\partial v\left(\underline{z} ; c_{1}, c_{2}\right)}{\partial z}=1
$$

Totally differentiate the previous two equations:

$$
\begin{aligned}
& \frac{\partial^{2} v\left(\bar{z} ; c_{1}, c_{2}\right)}{\partial z^{2}}+\frac{\partial^{2} v\left(\bar{z} ; c_{1}, c_{2}\right)}{\partial z \partial c_{1}} \frac{\partial c_{1}}{\partial \bar{z}}+\frac{\partial^{2} v\left(\bar{z} ; c_{1}, c_{2}\right)}{\partial z \partial c_{2}} \frac{\partial c_{2}}{\partial \bar{z}}=0 \\
& \frac{\partial^{2} v\left(\underline{z} ; c_{1}, c_{2}\right)}{\partial z^{2}}+\frac{\partial^{2} v\left(\underline{z} ; c_{1}, c_{2}\right)}{\partial z \partial c_{1}} \frac{\partial c_{1}}{\partial \underline{z}}+\frac{\partial^{2} v\left(\underline{z} ; c_{1}, c_{2}\right)}{\partial z \partial c_{2}} \frac{\partial c_{2}}{\partial \underline{z}}=0
\end{aligned}
$$

[^1]A necessary condition of choosing the cutoffs optimally is that a small change in \underline{z} and \bar{z} won't change the value of c_{1} or c_{2}. In other words, if \underline{z} and \bar{z} are chosen optimally, then $\frac{\partial c_{1}}{\partial \bar{z}}=\frac{\partial c_{2}}{\partial \bar{z}}=\frac{\partial c_{1}}{\partial \underline{z}}=\frac{\partial c_{2}}{\partial \underline{z}}=0$.
Thus, at the optimum \underline{z} and \bar{z},

$$
\begin{equation*}
\frac{\partial^{2} v\left(\bar{z} ; c_{1}, c_{2}\right)}{\partial z^{2}}=0 \text { and } \frac{\partial^{2} v\left(\underline{z} ; c_{1}, c_{2}\right)}{\partial z^{2}}=0 \tag{3}
\end{equation*}
$$

These are called the super contact conditions. Use these two equations, in addition to the two equations you wrote out in parts 6 and 7 (namely $\frac{\partial v\left(\bar{z} ; c_{1}, c_{2}\right)}{\partial z}=p_{s}$ and $\frac{\partial v\left(z ; c_{1}, c_{2}\right)}{\partial z^{2}}=1$) to solve for the four unknowns $c_{1}, c_{2}, \underline{z}$, and $\bar{z} .^{3}$
Once you have solved for $c_{1}, c_{2}, \underline{z}$, and \bar{z}, you can use parts 5-7 to write out $v(z)$ only in terms of parameters. Do so using $\left(p_{s}, r, \alpha, \pi, \Delta\right)=(0.5,0.1,0.3,0.03,0.01)$. Plot out $v(z)$ as a function of z.

Problem 2

I have sent you, via e-mail, links to four job market papers, written by your peers from other schools. Write a two-to-three page referee report on the paper of your choice. As a reminder, here is a link to Elisabeth Sadoulet and Alain de Janvry's guidelines on how to write a referee report:
http://are.berkeley.edu/courses/ARE251/2004/assignments/RRGuidelines.pdf .

[^2]
[^0]: ${ }^{1}$ Hint: Your answer, at this point, should be

 $$
 v(z)=\max _{z^{\prime}} \frac{r}{\alpha(1+r)}\left(z^{\prime}\right)^{\alpha}-\left(z^{\prime}-z\right)+\mathbf{1}_{k^{\prime}<k}\left(1-p_{s}\right)\left(z^{\prime}-z\right)+\frac{1}{1+r} \mathbb{E}\left[\gamma v\left(\frac{z^{\prime}}{\gamma}\right)\right]
 $$

[^1]: ${ }^{2}$ The solutions to the latter equation are:

 $$
 \begin{aligned}
 & \rho_{1}=\frac{1}{\Delta} \log \left[\frac{e^{\Delta}}{2}\left[\frac{r}{\pi}-\sqrt{\left(\frac{r}{\pi}\right)^{2}+\frac{4 r}{\pi}}\right]\right] \\
 & \rho_{2}=\frac{1}{\Delta} \log \left[\frac{e^{\Delta}}{2}\left[\frac{r}{\pi}+\sqrt{\left(\frac{r}{\pi}\right)^{2}+\frac{4 r}{\pi}}\right]\right]
 \end{aligned}
 $$

[^2]: ${ }^{3}$ Hint: There are many ways to numerically solve for these four unknowns. One relatively easy way that I found was using Mathematica. You can use the Solve command to solve for c_{1} and c_{2} for arbitrary values of \underline{z} and \bar{z} using the equations from parts 6 and 7 . Then with c_{1} and c_{2} solved for, you can solve for \underline{z} and \bar{z} using Equation (3) and the FindRoot command.

