
Notes on Gabaix (2011):
"The Granular Origins of
Aggregate Fluctuations"



Research question and motivation

I Majority of dynamic general equilibrium models: Firm (scale)
heterogeneity does not matter.

I Because some firms are so large, decisions of individual firms
can have aggregate implications

I 2004Q4: Microsoft issues $24 billion one-time dividend.
Accounts for 2.1% boost in personal income growth.

I 2000: Nokia accounts for half of Finish private R&D, 1.6
percentage points of GDP growth.

I Are these anecdotes exceptional or common?

I Question: To what extent are firm-level shocks responsible for
aggregate fluctuations?



Outline

I Some data
I Compustat: 1960 to present.

I Theoretical results and calibration
I The Central Limit Theorem is irrelevant when firm sizes are
fat-tailed

I The herfindahl index is a summary statistic for the importance
of firm-specific shocks.

I The granular residual



The firm size distribution in 1960
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The firm size distribution in 1970
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The firm size distribution in 1980
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The firm size distribution in 1990

GM

Ford
IBM

GE

1
0.

1
0.

01
0.

00
1

0.
00

01
1

CD
F

1 10 100 500
Sales (Billions)



The firm size distribution in 2000
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The firm size distribution in 2010
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Sales Herfindahl of firms in Compustat
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Overview of the theoretical results

I If the firm size distribution is Pareto, we can show how the
dispersion of GDP growth decreases in economies with more
and more firms.

I Even if the firm size distribution is not Pareto, we can relate
the dispersion of GDP to:

I σ: the standard deviation of firm productivity growth rates.
I h: the HHI of firm sales
I a combination of other model parameters.



"Islands Economy"
What is the relationship between micro productivity growth and aggregate output growth?

I Economy is made up of n units (firms or industries)

I Utility= logC , where C ≡
∏n
i=1

(
Ci
ξi

)ξi
I L ≡

∑
i Li is fixed at 1

I Set C as the numeraire good: P ≡
∏
i (Pi )

ξi = 1
I Production : Ci = AiLi

I σ =SD of productivity shocks, which are i.i.d. across units.

I One can show:
I PiCi

C = ξi
I logC =

∑
i
PiCi
C log (Ai )

I Thus:
I Var(logC ) =

∑ PiCi
C σ2

I σlog C =SD(logC ) =

[∑(
PiCi
C

)2]1/2
︸ ︷︷ ︸

≡h

·σ



The Pareto Distribution

Let Si ≡ PiCi be a Pareto(ζ,x0) random variable.

P(S > x) =
(
x
x0

)−ζ
.

Some useful facts about the Pareto distribution:

I E [S ] = x0
ζ
ζ−1 if ζ > 1, ∞ otherwise

I E
[
S2
]

= (x0)
2 ζ
ζ−2 if ζ > 2, ∞ otherwise

I Sα is Pareto
(
ζ
α , (x0)

α
)
distributed.

I αS is Pareto (ζ, αx0) distributed.
I r th moment of the k th largest value in a sample of

N ≡ E [S rk :N ] = (x0)
r Γ
[
k− r

ζ

]
Γ[k ]

Γ[N+1]

Γ
(
N+1− r

ζ

) , if r > ζ.

I Many other facts in Gabaix (2009, Section 2)



Classic Central Limit Theorem

Suppose S1, S2, .... SN is a sequence of i.i.d. random variables
with E [Si ] = µ and Var[Si ] = σ2 <∞. Then, as N approaches
∞, √

N
σ

(∑
Si
N
− µ

)
→d N (0, 1)

"Compared to an economy with 10 firms, an economy with 10
million firms will have GDP growth with a standard deviation 0.1%
as large".

What if Var[Si ] =∞?



Central Limit Theorem with infinite variances
Suppose S1, S2, .... SN is a sequence of i.i.d. nonnegative random
variables with P(Si > x) = x−ζL (x) (where L (x) is a
slowly-varying function, and ζ < 2). Then(∑

i Si − bN
aN

)
→ L (ζ) , where

an = inf
{
x : P (Si > x) ≤ 1

N

}
and bn = NE

[
Si · 1(Xi≤an)

]
and L (ζ) is a Levy distribution with exponent ζ.

I PDF of Levy distribution:
√

ζ
2π exp

{
− ζ
2x

}
x−3/2

I A slowly-varying function, L (x) is one that satisfies
limx→∞

L(tx)
L(x) = 1 ∀ t > 0.

I If P(Si > x) =
(
x
x0

)−ζ
, then

an = inf
{
x :
(
x
x0

)−ζ
≤ 1

N

}
= x0N1/ζ , bN = 0

I Thus N
1−1/ζ

x0

∑
Si
N → L (ζ)



Proposition 2

"Consider a series of island economies indexed by N. Economy N
has N firms whose growth rate volatility is σ and whose sizes
S1,..SN are independently drawn from a power law distribution."

P (S > x) = ax−ζ , with ζ ≥ 1.

As N →∞, GDP volatility follows

σGDP ∼
vζ
logN

σ for ζ = 1

σGDP ∼
vζ

N1−1/ζ
σ for ζ ∈ (1, 2)

σGDP ∼
vζ
N1/2

σ for ζ ≥ 2

When ζ ≥ 2, vζ is a constant; when ζ < 2, vζ is the square root of
a Levy distributed (with exponent ζ/2) random variable.



Intuition for Proposition 2

In our islands economy, σGDP = σh. Looking across economies
with different numbers of firms, how does h change as N changes?

Take P (S > x) = ax−ζ , and consider the case in which ζ ∈ (1, 2),
and a = 1.

E [Xk :N ]

NE [X ]
=

Γ
[
k − 1

ζ

]
(ζ − 1)

Γ [k] ζ

Γ [N]

Γ
(
N + 1− 1

ζ

)
→N→∞

Γ
[
k − 1

ζ

]
(ζ − 1)

Γ [k] ζ
N−(1−1/ζ)

Share of top K firms is proportional to N−(1−1/ζ) ⇒ h is
proportional to N−(1−1/ζ).



Proof of Proposition 2, Part 1

If ζ ≥ 2, the variance of Si is finite. Can apply the formula
σGDP = σh

h =
1
N1/2

[
N−1

∑
(Si )

2
]1/2

N−1
∑
Si

σGDP →
σ

N1/2
·
(
E
[
S2
])1/2

E [S ]



Proof of Proposition 2, Part 2
When ζ > 1, N−1

∑
Si → E [S ]

S2i has a power law exponent ζ/2

P
(

(Si )
2 > x

)
= ax−ζ/2

Use the CLT with infinite variances, if ζ > 1

N−2/ζ
∑

S2i →d L (ζ/2)

N1−1/ζh = N1−1/ζ
[
N−2/ζ

(∑
S2i
)]1/2

N−1
∑
Si

→d
(L (ζ/2))1/2

E [S ]

Putting the pieces together

σGDPN1−1/ζ = σhN1−1/ζ →d σ
(L (ζ/2))1/2

E [S ]

If ζ ≈ 1.05⇒ N1−1/ζ ≈ N0.05 ⇒ Compared to an economy with
10 firms, an economy with 10 million firms will have GDP growth
with a standard deviation about half as large.



Digression: Is the firm size distribution Pareto?

I With moderate sample size it’s diffi cult to distinguish between
Pareto distribution (which has finite variance) and something
like a lognormal distribution (for which regular CLT applies).

I Find best fit, assuming firm sizes are distributed either Pareto
or lognormal.

I f (x) = ζ(x0)ζ

xζ+1 ⇒ log f (x) = log ζ + ζ log x0 − (ζ + 1) log x

I ∂ log L
∂ζ̂

=
∑n
i=1

1
ζ + log

( x0
x

)
= 0⇒ ζ̂ =

[
1
N

∑
log
(
x
x0

)]−1
Sample x̂0 ζ̂

80 2.32 0.87
90 5.62 1.00
95 11.96 1.10
99 60.75 2.52



Digression: Is the firm size distribution Pareto?
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Digression: Is the firm size distribution Pareto?
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The dispersion of growth rates decreases with size
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I log
(
σGrow

)
= κ0 − κ1log(size);

I κ1 ∈ [0.15, 0.25], compare to benchmark of perfect
correlations of shocks within firms (κ1 = 0) or no correlation
(κ1 = 1

2 )



The dispersion of growth rates decreases with size

Lee et al. (1998)



We can extend Proposition 2 to allow for firm size and
firm volatility to be related.

Consider a series of island economies indexed by N. Economy N

has N firms whose growth rate volatility is σfirm (S) = σ
(
S
x0

)−α
and whose sizes S1,..SN are independently drawn from a power law
distribution.

P (S > x) = x−ζ , with ζ ≥ 1.

If ζ > 1, the volatility of GDP, σ (Y ), is proportional to

N
−min

{
1
2 ,1−

1−α
ζ

}
.

If ζ ≈ 1.05 and α ≈ 1
6 ⇒ N1−

1−α
ζ ≈ N0.21 ⇒ Compared to an

economy with 10 firms, an economy with 10 million firms will have
GDP growth with a standard deviation about 5% as large.



Hulten (1978)
What is the relationship between micro productivity growth and aggregate output growth?

I Economy is made up of n units (firms or industries)

I Utility= logC − φ
φ+1L

φ+1
φ , where C ≡

∏
i

(
Ci
ξi

)ξi
I Production : Qi = Ai

((
Li
αb

)α (
Ki

(1−α)b

)1−α)b (
Mi
1−b

)1−b
I Intermediate input bundle: Mi =

∏
j (Mj→i )

γji

I Market clearing: Qi = Ci +
∑
j Xi→j +Mi→j

I Version 1: Capital is fixed across time.
I Version 2: Ki =

∏
j (Xj→i )

θji

I Write
I Pi as the Lagrange multiplier for the good i market-clearing
condition, and Si ≡ PiQi .

I W as the Lagrange multiplier for the labor market clearing
condition.

I Set C as the numeraire good: P ≡
∏
i (Pi )

ξi = 1



Hulten (1978)
Step 1: Solve for Total Labor Supply

Consider the problem of the representative consumer who is trying
to maximize:

logC − φ

φ+ 1
L
φ+1
φ s.t. C = WL

Equilibrium C and L satisfy:

L = W φ

C = W φ+1 = L
φ+1
φ (1)



Hulten (1978)
Step 2: Solve for Prices

Consider the cost-minimization problem of firm/industry i .
Version 1:

logPi = − logAi + (1− α) b log (Ki/ [(1− α) b]) + αb logW

+ (1− α) b log Si + (1− b)
∑
j

γji logPj

−−−→
logP =

(
I − (1− b) Γ′

)−1 {−−−→logA− (1− α) b
−−−−−−−−−−−−−→
log (K/ [(1− α) b])

+ αb logW + (1− α) b
−−→
log S}

Version 2:

logPi = − logAi + αb logW +
∑
j

[(1− α) bθji + (1− b) γji ] logPj

−−−→
logP =

(
I − (1− b) Γ′ − (1− α) bΘ′

)−1 (−−−→logA+ αb logW
)
(2)



Hulten (1978)
Step 3: Write out sales in each industry

Using the market clearing conditions (Version 1)

Si = PiQi = PiCi +
∑
j

PiMi→j

Plugging in customers’factor demand curves and re-arranging:

Si − (1− b)
∑
j

γijSj = ξiC

−→
S = (I − (1− b) Γ)−1

−→
ξ C

In Version 2:

Si = PiCi +
∑
j

PiMi→j + PiXi→j

which eventually yields

−→
S = (I − (1− b) Γ− (1− α) bΘ)−1

−→
ξ C (3)



Hulten (1978)
Step 4: Write out total consumption and labor in terms of productivity

In Version 2: Plug Equation (2) into Equation (1)
−−−→
logP =

(
I − (1− b) Γ′ − (1− α) bΘ′

)−1 (−−−→logA+ αb logW
)

=
(
I − (1− b) Γ′ − (1− α) bΘ′

)−1 (−−−→logA+
αb
φ+ 1

logC
)

Use the fact that ξ′
−−−→
logP = 0

(φ+ 1)
(
I − (1− b) Γ′ − (1− α) bΘ′

)−1 −−→logA = logC

Remember the equation for sales
−→
S ′

C
=
−→
ξ ′
(
I − (1− b) Γ′ − (1− α) bΘ′

)−1
Thus

logC = (φ+ 1)

−→
S ′

C
−−→
logA and log L = φ

−→
S ′

C
−−→
logA

For version 1, you can do something similar.



Hulten (1978)
The Main Results

1. Aggregate productivity is a weighted average of productivity
of the individual units:

Aagg ≡ log C
L

=

−→
S ′

C
−−→
logA

The sum of the weights is bigger than 1.
2. Total output and labor inputs each depend on aggregate
productivity and the labor supply elasticity

logC = (φ+ 1)Aagg and log L = φAagg

3. Combining (1) and (2)

σlog C = (φ+ 1)

∑
Sj
C

[∑
i

(
Si∑
Sj

)2]1/2
σ = µ · h · σ,

where µ ≡ (φ+ 1) ·
∑ Si

C

I Calibration: h = 6%, σ = 12%, µ = 2⇒ σlog C = 1.4%



Partial summary

I h = 6% and σ = 12% ⇒ A calibration of a simple "islands"
model implies that independent firm shocks can potentially
meaningfully contribute to GDP volatility

I Rest of the paper:
I Construct a measure of productivity shocks to individual firms
I Regress GDP growth against productivity shocks of the largest
firms.



Defining the granular residual

From before

log
Yt
Yt−1

∝
∑
i

Si ,t−1
Yit−1

log
(
Ait
Ai ,t−1

)
Define

Γt ≡
100∑
i=1

Si ,t−1
Yt−1

ε̂it ,

ε̂it ≡ zit − zi ,t−1 − (z̄It − z̄I ,t−1)

where zit = log
(

sales of i in year t
employees of i in year t

)
, and z̄It is the corresponding

average labor productivity in firm i’s industry, I .



On the granular residual

log
(

Ait
Ai,t−1

)
measures changes in TFP, not in labor productivity.

I For plants in the manufacturing sector these productivity
measures have pretty different patterns (Syverson 2004):

I 90-10 (75-25) difference of log labor productivity is roughly 1.4
(0.66)

I 90-10 (75-25) difference of log TFP is 0.7 (0.29)



GDP growth and the granular residual

Sample 1952-2008 1952-2014
Γt 2.8 2.9 3.7 2.9 2.9 3.9
Γt−1 3.1 3.4 3.1 3.4
Γt−2 2.1 2.3
Intercept 0.02 0.02 0.02 0.02 0.02 0.02
N 57 56 55 63 62 61
R2 0.14 0.32 0.40 0.12 0.27 0.36
R̃2 0.12 0.29 0.36 0.10 0.24 0.32



GDP growth and the granular residual
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Granular events

I 1970 Strike at GM (labor productivity down 18%)
I 1972 Ford and Chrsyler have a rush of subcompact sales
I 1983 Launch of IBM PC (labor productivity up 10%)



Predictive power of the granular residual

Intercept 0.015 0.019* 0.021*
Γt−1 3.5** 3.3**
Γt−2 1.2 2.3*
Monetaryt−1 -0.04 -0.05
Monetaryt−1 -0.02 0.04
Oilt−1 -8.7 · 10−5 -1.7 · 10−4
Oilt−2 -6.9 · 10−5 -1.2 · 10−4
3-month t-billt−1 -0.45 -0.41
3-month t-billt−2 0.43 0.39
Term Spreadt−1 0.38 0.40
Term Spreadt−2 0.27 -0.38
R̃2 0.19 0.19 0.34

I Oil: (Hamilton 2003): current vs. last year’s max oil price.
I Monetary policy shock: Residuals from FOMC decisions vs.
FOMC forecasts (Romer and Romer 2004)

I Term spread: 5 year bond yield - 3 month bond yield.



Notes on Carvalho and
Gabaix (2013): "The Great

Diversification and its Undoing"



The Great Moderation
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The Great Moderation and its Undoing
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Motivation and question

I Why did volatility of GDP growth decrease beginning around
1980? And why did volatility increase beginning around 2005?

I Previous answers to the first question:
I Stock and Watson (2003): It doesn’t seem to have to do with
better inventory management or more aggressive monetary
policy.

I Arias, Hansen, and Ohanian (2007): Aggregate TFP shocks
have become less volatile )

I Jaimovich and Siu (2009): Fewer young people (those with
more elastic labor supply) in the work force

I New answer in this paper: Industry composition affects
aggregate volatility.



Industries differ in their volatility
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Fundamental Volatility

I Reminder from our islands economy
I Suppose economy is made up of n units (firms or industries)
I logGDPt =

∑
i

Sit
GDPt

log (Ait)

I log
(
GDPt+1
GDPt

)
≈
∑

i
Sit
GDPt

log
(
Ai,t+1
Ait

)
I Suppose Ai,t+1

Ait
are i.i.d. across time and industries, with

standard deviation σi

SD
[
log
(
GDPt+1
GDPt

)]
≈
[∑

i

(
Sit
GDPt

) 1
2

(σi )
2

]1/2
I Potentially

I productivity shocks are correlated, have volatilities that change
over time.

I things besides industries’TFP change from one period to the
next



Fundamental Volatility

σFt =

[∑
i

(
Sit
GDPt

)2
(σi )

2

]1/2
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Outline

I Definitions and data sources
I TFP in each industry
I σGDP

I Fundamental volatility accounts for the break in GDP
volatility.

I Sources of fundamental volatility
I Fundamental volatility and GDP volatility in other countries



Industry TFP Volatility

I KLEMS data from Dale Jorgenson
(http://hdl.handle.net/1902.1/11155)

I For each industry×year define TFP growth as:

∆TFPit = log
(
yit+1
yit

)
− 1
2

(
skit + skit+1

)
log
(
kit+1
kit

)
− 1
2

(
s lit + s lit+1

)
log
(
lit+1
lit

)
− 1
2

(
smit + smit+1

)
log
(
mit+1
mit

)
where s lit (s

m
it , s

k
it) is industry i’s cost share of labor

(intermediate inputs, capital) at time t.
I σi ≡SD(∆TFPit)



GDP Volatility

Three measures:
1) Rolling standard deviation

σrollt = SD
(
yHPt−10, ...y

HP
t+10

)
, where

yHPt is deviation of log GDP from trend

2) Instantaneous standard deviation

∆ys = ψ + φ∆ys−1 + εs

σInstt ≡ 1
2

√
π

2

4∑
q=1

|ε̂t ,q |

3) σHPt is the HP smoothed version of σInstt



Fundamental Volatility accounts for the break in GDP
volatility.

LRT =

∏T
t=1960 f1 (ηt)

∏2008
T+1 f2 (ηt)∏2008

t=1960 f0 (ηt)

σinstYt = a+ ηt σinstYt = a+ bσFt + ηt

H0 No break in a No break in b
No break
in a or b

maxT LRT 26.50 8.32 8.64 8.91
Reject null? Yes No No No
Estimated
break date

1983 NA NA NA



Fundamental Volatility
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Sales weights: motor vehicles and petroleum

σFt =

[∑
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Contribution to fundamental volatility: motor vehicles and
petroleum
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Sales weights: depository and nondepository financial
institutions
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Contribution to fundamental volatility: depository and
nondepository financial institutions
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Fundamental volatility tracks GDP volatility in other
countries
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Fundamental volatility tracks GDP volatility in other
countries
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Conclusion

Summary:

I GDP volatility changes over time.
I Volatility changes reflect changes in the importance of
different types of firms in the economy.

I Implies that firm/industry-level shocks are important for
aggregate volatility.

Next steps:

I To what extent are the economy’s shocks independent across
firms (or industries)?



Notes on Long and Plosser (1983):
"Real Business Cycles"



Model
I From the board:

Xj→i ,t = β
γi
γj
aj→iYjt

Lit =
βγibi

θ0 + β
∑
γjbj

H

I Plug these expressions into the production function:

Yi ,t+1 = λi ,t+1 (Lit)
bi
∏
j

(Xj→i ,t)
aj→i

= λi ,t+1

(
βγibi

θ0 + β
∑
γjbj

H
)bi ∏

j

(
β
γi
γj
aj→i

)aj→i
︸ ︷︷ ︸

≡exp{ki}

∏
j

(Yjt)
aj→i

logYi ,t+1︸ ︷︷ ︸
≡yi,t+1

= log (λi ,t+1)︸ ︷︷ ︸
≡ηt+1

+ ki +
∑
j

aj→i logYjt



Theoretical predictions
I Writing the previous equation in vector form:

yt+1 = A′yt + k + ηt+1

I Define ỹt+1 ≡ yt+1 − (I − A′)−1 k

ỹt+1 = A′ỹt + ηt+1

ỹt =
∞∑
j=0

(
A′
)j
ηt−j

I Assume Var(ηt) = I . Then:

Var (ỹt) =
∞∑
j=0

(
A′
)j Aj

Cov (ỹt , ỹt−1) =
∞∑
j=0

(
A′
)j Aj+1



Data

I BEA: 1992 Input/Output Table & Capital Flows Table.

I Dale Jorgenson: Annual data on industries’production.
I Agriculture (5%)
I Construction (6%)
I Durable Manufacturing (16%)
I Nondurable Manufacturing (16%)
I Transportation (10%) Wholesale/Retail (14%)
I Finance, Insurance, and Real Estate (13%)
I Personal and Business Services (20%).



Intermediate Input and Capital Flows

Agriculture 0.25 0.01 0.01 0.09 0.03 0.00 0.0 0.00
Construction 0.04 0.02 0.02 0.03 0.10 0.04 0.32 0.03
Durable Manf. 0.12 0.16 0.40 0.10 0.17 0.08 0.04 0.08
Nondurable 0.08 0.03 0.04 0.31 0.04 0.04 0.01 0.08
Transport 0.05 0.02 0.04 0.07 0.20 0.06 0.03 0.03
Whole/Retail 0.07 0.28 0.08 0.08 0.04 0.09 0.02 0.03
FIRE 0.11 0.03 0.02 0.03 0.05 0.10 0.26 0.06
Other Services 0.04 0.06 0.07 0.07 0.10 0.12 0.08 0.15
Capital +
Materials Share

0.78 0.60 0.69 0.77 0.73 0.52 0.76 0.46



Theoretical Predictions

Correlations and autocorrelations

Agriculture 1 0.09 0.11 0.13 0.11 0.08 0.10 0.07 0.31
Construction 1 0.12 0.09 0.09 0.07 0.06 0.06 0.07
Durable Manf. 1 0.11 0.13 0.08 0.08 0.08 0.42
Nondurable 1 0.11 0.08 0.08 0.08 0.36
Transport 1 0.08 0.11 0.07 0.26
Whole/Retail 1 0.08 0.06 0.12
FIRE 1 0.07 0.30
Other Services 1 0.17

Average correlation: 0.20
Average autocorrelation: 0.23



Empirical counterparts

Correlations and autocorrelations:

Agriculture 1 0.34 -0.09 0.55 -0.16 0.08 0.10 0.07 0.34
Construction 1 0.43 0.28 0.78 0.43 -0.13 0.05 0.25
Durable 1 0.00 0.59 0.03 0.01 0.68 -0.02
Nondurable 1 0.79 0.06 -0.41 -0.05 0.21
Transport 1 0.41 -0.46 0.14 0.30
Whole/Retail 1 0.22 -0.09 -0.07
FIRE 1 -0.04 0.53
Other Serv. 1 0.28

Average correlation: 0.28 (theoretical=0.20)
Average autocorrelation: 0.25 (theoretical=0.23)



Intermediate Input and Capital Flows
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Theoretical Prediction

Primary+
Construc tion

Manufac turing T ransport
+ Util i tiesServices

0%
20%
40%
60%
80%

Average correlation: 7%
Average autocorrelation: 22%



Empirical counterpart

Primary+
Construc tion

Manufac turing T ransport
+ Util i tiesServices

0%
20%
40%
60%
80%

Average correlation: 26% (theoretical=0.07)
Average autocorrelation: 64% (theoretical=0.22)



Conclusion

I Two common characteristics of business cycles: co-movement
and persistence

I Input-output linkages can spread industry-specific shocks over
time, across industries.

I With data on many industries, the amplification seems not to
be "strong enough"⇒ residual cross-industry correlation of
productivity shocks.

I ∆ỹt+1 − A′∆ỹt = log
(
λt+1
λt

)
⇒ Can use data on

∆ỹt+1 − A′∆ỹt to infer correlation of productivity shocks.



Notes on Foerser, Sarte, Watson (2011)
"Sectoral vs. Aggregate Shocks:
A Structural Factor Analysis of

Industrial Production"



Research questions

1. How correlated are shocks to industries’productivities?

2. What fraction of industrial production volatility is due to
common shocks? Industry-specific shocks?

3. Are the answers to (1) and (2) different for different points in
the sample? Were common shocks or industry-specific shocks
less volatile during the Great Moderation (after 1983)?



Outline

I Data
I Statistical factor analysis
I Model and structural factor analysis



Data

I BEA: Input/Output Table & Capital Flow Table, from 1997.
I Federal Reserve Board: Quarterly data on industrial
production, from 1972 to 2011.

I Quarterly data
I 117 industries in manufacturing, mining, energy, and
publishing.



Industrial production and its components
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Industrial production tracks GDP
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Principal component analysis

I Define gt as the vector of sectoral growth rates, log
(
Yt+1
Yt

)
,

and wt as the weight of each industry within the industrial
sector.

I How can we best measure the fraction of variation in w ′t · gt
that is due to "common shocks"?

I Suppose that

gt
117×1

= Λ
117×2

· Ft
2×1

+ ut
117×1

where Ft is some small (e.g., two) number of common factors,
and ut are idiosyncratic shocks (the covariance matrix of u
has zero off-diagonal terms), and Ft and ut are uncorrelated.

I Use principal component analysis to choose Λ, Ft so that ΛF
explains the maximum possible variance of the gt vector.
These columns of F will represent the common shocks.



Principal component analysis

I From the last slide

gt = Λ · Ft + ut

I Note that Λ and Ft are not separately identified.
ΛFt = Λϑ︸︷︷︸

Λ̃

ϑ−1Ft︸ ︷︷ ︸
F̃t

. We will normalize Λ so that the lengths of

each column equal 1.
I Useful formulas:

Σgg = ΛΣFFΛ′ + Σuu

σ2g = w̄ ′ΛΣFFΛ′w̄ + w̄ ′Σuuw̄

R2(F ) =
w̄ ′ΛΣFFΛ′w̄

σ2g



Principal component analysis: 2-d to 1-d
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Principal component analysis: 2-d to 1-d
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Principal component analysis

The idea is to find the linear combination of the data that explains
the greatest possible variance

max
‖Λ1‖=1

Λ′1ΣAnimal,GrainΛ1

= max
Λ1

Λ′1ΣAnimal,GrainΛ1 + µ1
(
1− Λ′1Λ1

)
First order conditions:

2ΣAnimal,GrainΛ1 = 2µ1Λ1
ΣAnimal,GrainΛ1 = µ1Λ1

Note that
Λ′1ΣAnimal,GrainΛ1 = Λ′1µ1Λ1 = µ1

To maximize the left hand side, choose the unit-length eigenvector
associated with the largest eigenvalue of ΣAnimal,Grain.



Principal component analysis
Can extend this idea to many (say 117) data series and multiple
(say 2) factors.

Suppose we have 117 data series and we have computed the first
factor F1 = g ′ · Λ1. The problem is now to find a vector Λ2 that is
orthogonal to Λ1 and explains the greatest possible variance:

max
Λ2

Λ′2ΣggΛ2 + µ2
(
1− Λ′2Λ2

)
+ κΛ′2Λ1

First order conditions:

ΣggΛ2 = µ2Λ2

The solution to this maximization problem, Λ2 will be the
eigenvector associated with the second largest eigenvalue of Σgg

Side note: See Bai and Ng (2003) on how to choose the number of
factors (similar to minimizng Mallows’s Cp)



The two columns of Λ

Logging

Copper

Coffee/Tea Animal Food

Sawmills
Plywood

Iron

Nonferrous Metal

Heavy Trucks

MV Bodies
MV Parts

Coffee/Tea Animal Food

Heavy Trucks

MV Bodies
MV Parts

.0
5

0
.0

5
.1

.1
5

Lo
ad

in
gs

: F
irs

t F
ac

to
r

.1 0 .1 .2 .3
Loadings: Second Factor



Industrial production and its factor component
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Partial summary

I The story so far: there is a strong common component to
industrial production.

I Is this because there are common shocks? Or because there
are independent shocks transmitted via input-output
relationships?

I Rest of the paper: Use a model with input-output linkages to
back out productivity shocks for each industry-quarter.
Perform factor analysis on the productivity shocks.

I N perfectly competitive sectors, which produce using capital,
labor, and the output of other sectors.

I Consumers have preferences over leisure and consumption of
the goods produced by the N industries.

I Productivity growth is distributed N (0,Σωω); ω will admit an
factor representation.



Model: Market Clearing

I Output can be used for consumption, as an intermediate
input, or to increase one of the N capital stocks:

Ytj = Ctj +
N∑
i=1

Mt ,j→i +
N∑
i=1

Xt ,j→i ∀j ∈ {1, ...N}



Model: Preferences

I Consumers’lifetime utilities are given by:

U =
∞∑
t=0

βt

[
N∑
i=1

(Cti )
1−σ − 1
1− σ − ψLti

]

I ψ: disutility from work
I σ: preference elasticity of substitution, intertemporal elasticity
of substitution.



Model: Production

I The production technology of each sector is given by:

Ytj = Atj (Ktj )
αj Mtj (Ltj )

1−αj−
∑
i γij

I The intermediate input bundle of sector j consists of the
purchases from the other sectors:

Mtj =
∏
i

X γijt ,i→j

I γij is the share of good i used in the production of the good-j
intermediate input.



Model: Evolution of Capital, Productivity

I Industry-j-specific capital evolves according to:

Kt+1,j = (1− δ)Ktj + Ztj

where Ztj =
∏
i

X θijt ,i→j

I θij is the share of good i used in the production of the good-j
capital input.

I Productivity in each sector evolves according to a random
walk:

logAt+1,j = logAtj + ωt+1,j , ωt+1 ∼ N (0,Σωω)



Solution
I The model yields the following (log-linear-approximate) expression
for the evolution of output: ∆ logYt+1,1

∆ logYt+1,2
....

= Q

(
∆t,1

∆t,2

....

)
+ R

 ωt1
ωt2
...

+S

 ωt+1,1
ωt+1,2
...


I Q, R , and S are specified, given (β, δ, ψ, σ, αi , θij , γij )
I Given these parameters, one can back out innovations to
productivity (setting ω0 = 0): ωt+1,1

ωt+1,2
...

=S−1

 ∆ logYt+1,1
∆ logYt+1,2

....

−Q
 ∆ logYt1

∆ logYt2
....


−R

 ωt1
ωt2
...


I Next step: Calibrate model’s parameters, which will allow us to
back out ωtj .



Calibration

Parameter Value/Source
β-discount factor 0.99
δ-capital depreciation rate 0.025
ψ-disutility from work 1
σ-consumers’elasticity, across goods 1
αi -capital share in production of i 1997 BEA I.O. Tables
1− αi −

∑
j γij -share of

capital/labor in production of i
1997 BEA I.O. Tables

γij -share of good i in production
of j’s intermediate input

1997 BEA I.O. Tables

θij -share of good i in
production of j’s capital input

1998 Capital Flow Tables



Calibration of Σωω

I Given the other parameters, we know ωtj for all time periods
industries.

I Two calibrations:
I Σωω is diagonal, with the j , j th entry equal to the sample
variance of ωtj

I Perform principal component analysis on the ωtj :
Σωω = ΛSΣSSΛS + Σuu , with a 2-dim. common factor, St

I With Σωω in hand, we compute the following statistics:
I ρ̄ij : average correlation in the growth rates for two industries
I σg : standard deviation of the growth rate of industrial
production

I R2(S): fraction of the variation in industrial production growth
explained by the common factors.



Results

Period ρ̄ij σg R2 (S)

Data 72-83 0.27 8.8
84-07 0.11 3.6

Uncorrelated Shocks 72-83 0.05 5.1
84-07 0.04 3.1

2 Common Factors 72-83 0.26 9.5 0.81
84-07 0.10 4.1 0.50



Comparison to other models

I Foerster et al.:

gt+1 = Qgt + Sωt+1 − Rωt

I Long and Plosser: Materials arrive with a one-period lag, no
capital, log preferences for consumption and leisure.

gt+1 = Γ′gt + ωt+1

Σgg =
∞∑
i=0

(
Γ′
)i

ΣωωΓ′

I Carvalho (2007), Acemoglu et al (2012): No capital, log
preferences for consumption, perfectly elastic labor supply

gt+1 =
(
I − Γ′

)
ωt+1

Σgg =
(
I − Γ′

)
Σωω (I − Γ)



Model performance with independent productivity shocks

ρ̄ij σg σg (diag)
σg (scaled)÷

σg ,bench(scaled)
Data 0.19 5.80 1.85
Benchmark 0.04 3.87 1.88 1.00
Long-Plosser 0.01 2.66 2.07 0.39
Carvalho 0.04 3.15 1.64 0.87
Benchmark, θ = I 0.02 3.86 2.43 0.59
Benchmark, Σωω = σ2I 0.04 5.72 2.99 0.86
Benchmark, Γ, α: average 0.05 3.30 1.71 0.87

σg (scaled) is defined as the σg computed in an alternative
calibration in which Σωω is chosen so that "model-implied variance
of IP growth associated with the diagonal elements of Σgg
correspond to the value in the data."



Do the industry definitions matter?

Period
2-digit
26 inds.

3-digit
88 inds.

4-digit
117 inds.

Data ρ̄ij 72-83 0.38 0.29 0.27
84-07 0.22 0.13 0.11

Independent Error ρ̄ij 72-83 0.09 0.05 0.05
84-07 0.07 0.05 0.04

R2 (S) 72-83 0.76 0.85 0.81
84-07 0.53 0.53 0.50



Conclusion

I Summary:
I Industry-specific shocks explain about 40% of the variation in
industrial production

I Lower (20%) in the pre-Great Moderation period; higher
(50%) in the Great Moderation. Common shocks became less
volatile during the great moderation

I Extensions:
I Apply this model to the whole economy, not just the
goods-producing sectors (Ando 2014)

I Decompose output variation into firm-specific,
industry-specific, and common shocks.
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