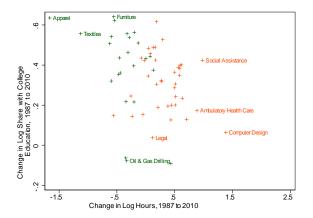
Notes on Young (2015) "Structural Transformation, the Mismeasurement of Productivity Growth, and the Cost Disease of Services"

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ


- Industries' productivities grow at different rates
 - Relative price of services vs. goods increased by 0.8pp each year.
 - ► If goods and services are complements in consumption→ labor demand for services increases

- As expanding sectors' hire additional workers, average worker quality declines
 - Causes measured TFP to decline..

Papers like Ngai and Pissarides focus on the first bullet point. Young focuses on the second.

Proof of concept

Negative Correlation between Industry Growth & Change in Observed Worker Quality

э

What about unobserved worker characteristics?

Outline

- Measuring productivity growth
 - Motivating model for why worker quality might decline with industry size.
 - Implications for productivity growth between goods & services.

・ロト・日本・モート モー うへぐ

• Estimating ξ

Workers choose sectors according to their comparative advantage

- Each worker has efficiency levels z_G and z_S in producing in goods/services.
 - Let u index workers
- Each sector offers *w_i* as the wage per efficiency unit.
- ▶ The set of workers working in *G* are

$$\mathsf{Set}_{G} = \{u | w_{G} z_{G} (u) > w_{S} z_{S} (u)\}$$

• Let π_G denote G's share of workers

• Average efficiency in sector G is

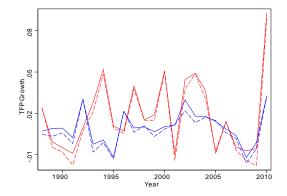
$$\bar{z}_{G} = \frac{\int_{u \in \operatorname{Set}_{G}} z_{G}(u) \, du}{\int_{u \in \operatorname{Set}_{G}} du} = \frac{\int_{u \in \operatorname{Set}_{G}} z_{G}(u) \, du}{L\pi_{i}}$$

Measured productivity

Key parameter, elasticity of worker efficiency with industry size: ,-

$$\xi \equiv \frac{d\bar{z}_i}{d\pi_i} \frac{\pi_i}{\bar{z}_i}$$

Each industry i produces using capital and (effective) labor


$$Q_i = A_i F_i \left(K_i, L_i \bar{z}_i \right)$$

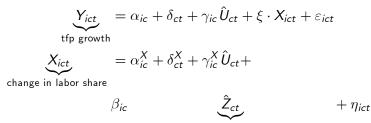
- Effective labor is the product of hours L_i and (unobserved) average worker efficacy z
 _i
- Taking a log-linear approximation (then using the definition of ξ)

$$\begin{aligned} \hat{A}_{i} &= \hat{Q}_{i} - \Theta_{K_{i}}\hat{K}_{i} - \Theta_{L_{i}}\hat{L}_{i} - \Theta_{L_{i}}\hat{\overline{z}}_{i} \\ &= \hat{Q}_{i} - \Theta_{K_{i}}\hat{K}_{i} - \Theta_{L_{i}}\hat{L}_{i} - \xi\Theta_{L_{i}}\hat{\pi}_{i} \end{aligned}$$

None of what is on this slide depends on why \overline{z} responds to π , $\overline{z} = -\infty$

Measured productivity growth

 Difference in TFP growth: 0.94 pp, 0.85 pp when accounting for workers' observable characteristics (sex, age group, education category).


Implications for productivity growth

ξ	Goods	Services	Aggregate
0.00	1.57	0.73	0.97
-0.25	1.34	0.78	0.94
-0.50	1.10	0.84	0.91
-0.75	0.87	0.90	0.88
-1.00	0.64	0.95	0.85

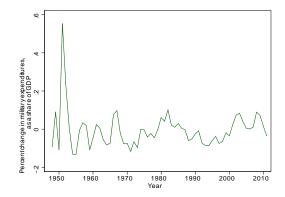
Task for the rest of the paper: estimate ξ.

Empirical specification

 Δ in military spending, or other instrument

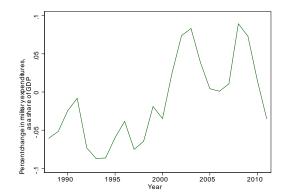
Idea: Wars (or other events that shift military spending)

- 1. Affect labor demand, differentially across industries
- 2. Do not directly impact tfp growth

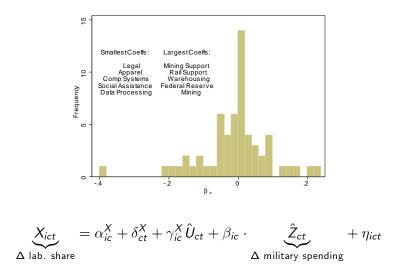

Industries' exposure to federal spending differs greatly

Industry	Sales Share	Industry	Sales Share
Agriculture	0.0%	Other transport	13.9%
Textiles	0.0%	Motor vehicles	2.9%
Chemicals	0.0%	F.I.R.E.	2.4%
Lumber	0.0%	Construction	2.2%
Paper	0.0%	Electrical machinery	1.1%

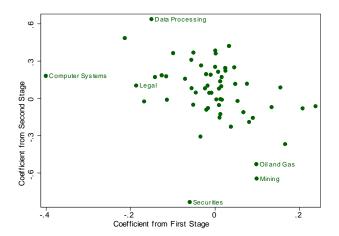
Note: These figures are taken from the 1997 IO Table, using a slightly different industry classification from what is given in Young (2015).


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

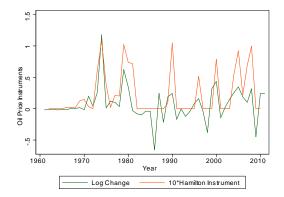
Changes in military spending


◆□▶ ◆□▶ ◆注▶ ◆注▶ 注目 のへ(?)

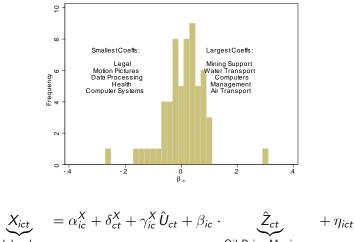
Changes in military spending


◆□▶ ◆□▶ ◆注▶ ◆注▶ 注目 のへ(?)

First-stage estimates

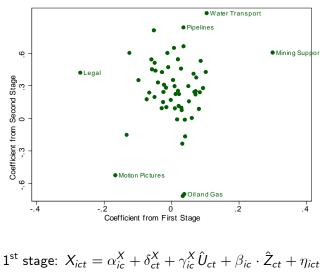

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

First-stage and second stage estimates



1st stage: $X_{ict} = \alpha_{ic}^{X} + \delta_{ct}^{X} + \gamma_{ic}^{X} \hat{U}_{ct} + \beta_{ic} \cdot \hat{Z}_{ct} + \eta_{ict}$ 2nd stage: $Y_{ict} = \alpha_{ic} + \delta_{ct} + \gamma_{ic} \hat{U}_{ct} + \gamma_{ic} \cdot \hat{Z}_{ct} + \varepsilon_{ict}$ ◆□▶ ◆圖▶ ★ 圖▶ ★ 圖▶ / 圖 / のへで

Other instruments: Oil Prices


First-stage estimates

 Δ lab. share

Oil Price Maximum

First-stage and second stage estimates

 $2^{\mathsf{nd}} \mathsf{ stage:} \ Y_{\mathit{ict}} = \alpha_{\mathit{ic}} + \delta_{\mathit{ct}} + \gamma_{\mathit{ic}} \hat{U}_{\mathit{ct}} + \gamma_{\mathit{ic}} \cdot \hat{Z}_{\mathit{ct}} + \varepsilon_{\mathit{ict}}$

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

OLS & IV Industry estimates vary quite a bit

Benchmark						
	OLS	Δ Defense	Δ Metals	Oil Price		
	UL3	Spending	Prices	Maximum		
ξ	-0.22	-0.92	-0.55	0.37		
(s.e)	0.11	0.27	0.32	0.38		
F-test p.val		0.00	0.00	0.01		
Dropping the \hat{U}_{ct} terms						
	OLS	Δ Defense	Δ Metals	Oil Price		
	UL3	Spending	Prices	Maximum		
ξ	-0.17	-0.36	-0.24	0.36		
(s.e)	0.10	0.22	0.45	0.40		
F-test p.val		0.00	0.44	0.03		

Lessons

1. Productivity is, many times, taken to be an exogeneous process.

Example: Basu (1996)

- 1.1 (Conventionally measured) productivity is highly procyclical and volatile (perhaps implausibly so).
- 1.2 Is this (partly) due to procyclical utilization?
- 1.3 How to measure changes in utilization?
- 2. (Industry-specific) factor supply curves slope up. Example: Goolsbee (1997, 1998)
 - 2.1 Physical capital (Scientists' labor) supply is not perfectly elastic
 - 2.2 Subsidies to investment (R&D) lead to higher investment prices (scientists' wages)
 - 2.3 Conventional measures of societal value investment (R&D) subsidies may be too high