SA

Workbook

for Writing SAS Programs
to Process Data on UNIX

November 1999

SOCIALSCIENCE-COMPLTING-CODPERATIVE

SAS Workbook for Writing SAS Programs to Process Data on UNIX

Table of Contents

Introduction to the Workbook oo 5
PrEEgUISTES e 5
How to UsethisSWorkbooko e 5

INtrOdUCEION T0 SAS . . e e 7
Methods of running SAS .. . oo 7

Programming With SAS 11
SA S DA S S . . ottt 11
SA S PIOgrAMS . . . e 12
RUIESTOr SAS StaEMENtS . ..o e 13
RUIESTOr SAS INAMES .. .o 14

RUNNING YOUr SAS PIOgIam oottt e e e e e e e e e 17

NoninteraCtive MOdeot 18
BachMode. 18
SA S EITOIS . .ottt 19

Creating SAS Dala SatSottt 25
DAT A S EMENt . ..o 25
INPUT Staemento e e et e 26

LIS INPUE . . e 26
COlUMN INPUE .« . .o 27
MIXEA INPUL .« . o e e e 30
Reading fromtheSameRecord TWICEot et e 32
Reading Multiple Recordsto CresteaSingle Observation.ovvivn... 35
CARDSand INFILE Statementso ot e e 36

Modifying Datausing SAS Staementst 39

USNg ASSgNMENt STEMENESot 39
SAS FUNCHIONS . . oottt e e e 40
Storing Numeric Varigbles Efficiently 40
USNg IF-THEN/ELSE Statements oo ot et et e 43
USNG DO GIOUPS o ettt et e e e e e e e e e e e e e e 46
Performing the Same Actionfor aSeriesof Variables, 47
Grouping VariableSintO AITaysS oot 47

SAS Workbook for Writing SAS Programs to Process Data on UNIX 3

Repeating the ACHIONo 438

SdectingtheCurrent Variable 48

USNG SET SatememtS . . .ottt e et e e 51
Reading Sdlected Obsarvationsttt e 51
Reading Sdected Variables 51
Concatenating SAS DalaSatSot e 52
UsngaVdueinalater Obsarvationttt e 54
Writing Observationsto Multiple SASDataSes ... 55
MeErging SAS Dala SESottt 59
ONEtO-ONEMEIGING . . . ottt et e e e 59
MaCh MEGING . ..ottt e e e e e 61
Reading Hierarchica Fles e e e 65
CreatingaSingle SASDaaSatot 65
Identify theRecord Layoutt e e 66
Conditiondly Read Oneof theRecords ... 66
Writethe ObSarvation 67
Creating MUItiple SAS DaaSELSot it 68
Permanent SAS DalaSalS oo e 71
Storing Permanent SASData Sets Efficiently 72
USING SAS PIrOCEAUNES ottt ettt et e e et et e e e e 75
Making OULpUL INfOMMIALIVE oo e e e e e 78
TS o 78
Vaiable Labals 79

VaAUE LabES . . 80

SAS Proceduresfor Verifyingyour SASDataSet ... 84
The PRINT Procedureo e e e 84

The CONTENTSPIOCEdUIret 84
Plotting Datausngthe PLOT Procedure. e e 85
Generating Frequency and Cross tabulation TablesusngPROCFREQ 87

RE O ENCES . . . oo 92
SOIULIONS IO EXEICISES . . . o ottt e e e e 95

4 SAS Workbook for Writing SAS Programs to Process Data on UNIX

Introduction to the Workbook

Thisworkbook provides an introduction to using verson 6.12 of SAS on UNIX. It isdesgned to
serve as a Hf-ingructiona tutoria as well as notes to accompany training sessions offered by SSCC
gaff. Thisworkbook concentrates on teaching you how to write SAS programsto read in and process
data. Very few Satitical or graphica procedures are covered. Once you have mastered the
techniques introduced in this workbook, you can consult the documentation provided by SAS Inditute
to learn about other features of SAS. These documents are circulated by the CDE Print/Virtud Library
in 4457 Socid Science. There are dso numerous handouts written by SSCC staff that you may find
useful. Thesearelisted at the end of this workbook.

Prerequisites

Y ou do not need to have any previous experience with SAS or any other statistica software to usethis
workbook. You aso do not need any prior datistica knowledge. What you do need to haveisa
basic understanding of the UNIX operating system including a text editor such asEMACS or TPU.

How to Use this Workbook

Thisworkbook is designed to be sef-ingructiona. Y ou should read through it in the order it is
presented. Exercises are included adong the way for review and practice. 'Y ou should aways complete
the exercises before proceeding to the next section because the only way to learn SASisto actualy
write and execute SAS programs.

SAS Workbook for Writing SAS Programs to Process Data on UNIX 5

SAS Workbook for Writing SAS Programs to Process Data on UNIX

Introduction to SAS

SASisanintegrated system of software products that enable you to access, manage, andyze, and
present dl of your data. The functiondity of SASis

1 built around these four primary data-driven tasks common to al gpplications. access, managemern,
andyds, and presentation.

1 portable across computing environments, i.e. SAS gpplications function the same, look the same,
and produce the same results no matter what operating system you are running from.

1 surrounded by flexible user interfaces giving the user choices in how he/she interacts with the
software.

SAS s composed of numerous integrated software products. Base SAS s the cornerstone that
supports these products. 1t contains a programming language, a data management facility, and data
andysis and reporting utilities. The programming language, with its datistics and functions, isintegrd to
SAS because it forms the building blocks from which al SAS gpplications are created. Combined with
the general-purpose base product utilities (or procedures), the SAS language gives base SAS software
al the functiondity required to access, manage, analyze, and present your data.

Other SAS products include satistical analysis (SAS'STAT), forecasting and modding (SASETS),

Structured Query Language (SAS/SQL), and graphics (SASGRAPH). Severd other products are
avalable aswdll.

The materia presented in this workbook pertains primarily to Base SAS.

Methods of running SAS

There are four methods of running SAS programs and displaying output. The methods differ in the
gpeed with which they run, the amount of computer resources they require, and the interaction you have
with the program (thét is, the kinds of changes you can make while the program isrunning). The results
are the same, regardless of the way the programs are run. The following list briefly describes each
method:

SAS Workbook for Writing SAS Programs to Process Data on UNIX 7

Batch Mode: To run aprogram in batch mode, you prepare afile containing a SAS program using a
text editor such as EMACS or TPU. Then you execute the program in the background. 'Y our terminal
sesson isfree for you to work on something else while the program runs. The results of your SAS
program go to a pre-pecified detination; you can look at them when the program has finished running.

Non-interactive M ode: In non-interactive mode, you prepare afile of SAS statements and submit the
SAS program to the computer. The program runsimmediately and occupies your current termind
sesson. You dont see the results of your SAS program until it has finished running.

I nteractive Line Mode: Ininteractive line mode, you enter one line of a SAS program a atime.
SAS recognizes steps in the program and executes them automaticaly. Y ou can see the results
immediately on your screen. A typical SAS session in interactive line mode might look like the
following:

nor man. ssc. Wi sc. edu> sas -nonews -nodns
NOTE: Copyright (c) 1989-1993 by SAS Institute Inc., Cary, NC USA
NOTE: SAS (r) Proprietary Software Rel ease 6.10 TS018

Li censed to UNIVERSITY OF WSCONSIN, Site 0002176032.

NOTE: AUTCOEXEC processi ng conpl et ed.

1? data class; infile "class.dat";
2? input nane $ 1-7 height 9-12 weight 14-18 age 20-21; run;
NOTE: The infile "class.dat" is:
Fi 1 e Nane=/t np_mt/ home/ ml ntder not / soc365/ cl ass. dat,
Onner Name=ntder not, G oup Nanme=dpadmn,
Access Perm ssion=rwr--r--,
File Size (bytes)=1107
NOTE: 20 records were read fromthe infile "class.dat".
The mnimumrecord | ength was 21.
The maxi mumrecord | ength was 21.
NOTE: The data set WORK CLASS has 20 observations and 4 vari abl es.
3? proc neans; var wei ght height; run;

Vari abl e N Mean Std Dev M ni num Maxi mum

VEI GHT 19 100. 0263158 22.7739335 50. 5000000 150. 0000000
HEI GHT 20 61. 7300000 5. 6805393 50. 2000000 72. 0000000

Display Manager Mode: In display manager mode, you interact directly with SAS viaa series of
windows. Display manager mode is a quick and convenient way to write, submit, and view the results
of your SAS programs. A typica SAS sesson in display manager mode looks like the following:

8 SAS Workbook for Writing SAS Programs to Process Data on UNIX

@ SAS: OUTPUT-Untitled -Igix
File Edit View Globalz Help —
Al
fOTE: SAS ir» Proprietary Software Release 6,12 TS040 E
Licensed to UNIVERSITY OF WISCOWSIM, Site OOO217E0Z2,
Thiz message iz contained in the 5AS news file, and iz presented upon
initialization, Edit the files "news" in the "mizc/baze" directory to
display site-specific news and information in the program log,
The command line option "-nonews" will prevent this display,
HOTE: AUTOEXEC proceszing beginning: file iz Atmp_mntdhomesmsmodermotsautoexec, zas,
MOTE: SAS initialization uzed:
real time 14,41 zeconds
cpu time 2,00 zeconds
HOTE: AUTOEXEC processing completed, /
- I -
5 - 10] x|
File Edit \View Locals Globals Help
e | [
Q002 2
Q003
Qo004
Q005 =
QO00E
Qo007
Q00
L]
Qo010
Qo011 ¥
I~ J = 7
I~ J.~

UNIX users may run SAS programs using any of the four methods just described. However, in this
workbook, only running SAS programs in noninteractive and batch mode will be described. Refer to
SSCC Pub #7-4, "Using SAS on UNIX", for ingructions on how to run SAS programs under UNIX
in the other two modes.

SAS Workbook for Writing SAS Programs to Process Data on UNIX

10 SAS Workbook for Writing SAS Programs to Process Data on UNIX

Programming with SAS

This chapter introduces you to the basic components of SAS. It defines and describes SAS data sets,
SAS programs, and SAS statements. These basic components are discussed in more detail in later

chapters.

SAS Data Sets

SAS reads data in various forms and organizes them into arectangular form caled a SAS data .
Following is an example of atypica SAS dataset. The data represent personsin aclass and consst of

their name, sex, weight, height, and age.

NAME

SEX

AGE

HEIGHT

WEIGHT

Audrey

41

74

170

Ron

42

68

166

Cal

32

70

155

Antonio

39

72

167

Deborah

30

66

124

Jacqueline

33

66

115

Helen

26

64

121

David

30

71

158

James

53

72

175

Michael

32

69

143

Ruth

47

69

139

Joel

34

72

163

Donna

23

62

98

Roger

36

75

160

Yao

70

145

Elizabeth

31

67

135

Tim

29

71

176

Susan

MM (M2 |IMIZIZIZ(M(MIMIZ|ILZ|IZ|LZ

28

65

131

A datavdueisasdngle unit of information, such as one person's height. A varidbleisaset of data
vaues tha describe a pecific characteridtic, for example the weight of dl the individuds in the class.
The weight values make up the WEIGHT variable, the name vaues make up the NAME varigble, and

SAS Workbook for Writing SAS Programs to Process Data on UNIX 11

soon. In thefigure above, each column represents avariable.

SAS variables can be classified as character or numeric. Character variables contain data vaues
conssting of acombination of |etters of the a phabet, numbers, and specid characters or symbols.
Numeric variables contain vaues congsting only of numbers and related symbols, such as decima
points, plus Sgns, and minus Sgns.

An observation is a set of data vaues for the same item, for example al measurements for one person.
In the figure above, each row represents an observation. So, a SAS data set has arectangular
organization with variables representing the columns and observations representing the rows.

Missing values represent missing or unavailable data values to SAS and are represented as either
periods or blanks, depending on the method of data entry and the type of datavadue. Find the missng
vauein the figure above.

SAS Programs

SAS programs consist of one or more steps made up of instructions called statements. The steps are
aways one of two types. DATA steps or PROC steps. A DATA gtep consists of a group of
datementsin the SAS language that read raw data or existing SAS data sets and perform caculations
and manipulations. A PROC step conssts of agroup of statements that alow you anayze the data and
write reports.

For processing, you smply arrange the stepsin the order you want tasks to be performed. SAS
processes the first step, then the second, and so on, independently of other steps. The following isan
example of a SAS program that creates a SAS data set named CLASS, then creates scatter plots
involving some of the variables, and findly carries out aregresson andyss

data cl ass;
infile "~/rawdat a/ wei ght. dat";
i nput name $ 1-7 height 9-12 weight 14-18 age 20-21;
ht _cm = hei ght * 2.54;

run;

proc pl ot data=cl ass;
pl ot hei ght *age wei ght *age;
run;

12 SAS Workbook for Writing SAS Programs to Process Data on UNIX

proc reg data=cl ass;
nodel wei ght =age hei ght;
pl ot student.*p.;

run;

The DATA gep portion of the program begins with the keyword DATA and ends with the RUN
satement following the last datarecord. The data step is composed of the following € ements:.

The DATA satement tells SASto begin building a SAS data set named CLASS.
The INFILE statement tells SAS where to find the data file to be processed.

The INPUT gtatement identifies the fields to be read from the input data and names the SAS
variablesto be read from them.

The fourth statement is an assgnment statement; it converts the height measurements from inches to
centimeters and assigns the results to anew variable, HT_CM.

The RUN statement tells SAS that the preceding statements are ready to be executed. This
statement ends the DATA sep.

Following the DATA step are two PROC steps, PLOT and REG. The PROC PLOT step requests
plots of the data and PROC REG step requests aregression anayss.

The statements that created the data set CLASS are part of the SAS programming language. Of
course, as with any programming language, there are rules.

Rules for SAS Statements

SAS statements end with a semicolon.

SAS gtatements can be entered in lowercase, uppercase, or amixture of the two.

Any number of SAS statements can gppear on asingle line.

A SAS gatement can be continued from one line to the next, as long as no word is split.

SAS gatements can begin in any column.

SAS Workbook for Writing SAS Programs to Process Data on UNIX 13

I Wordsin SAS statements are separated by blanks or by specid characters.

Rules for SAS Names

SAS names are used for SAS data set names, variable names, and other items. The following rules
apply to SAS names.

I A SASname can contain from one to eight characters.
I Thefirg name must be aletter or underscore ().
1 Subsequent characters must be letters, numbers, or underscores.

I Blanks cannot appear in SAS names.

14 SAS Workbook for Writing SAS Programs to Process Data on UNIX

Exercise 1
1. Correct thefollowing SAS program and make it more readable:

proc gl m dat a=WGTI oss; cl ass
sex age;
nmodel wgt =
se
X
age
;run;
2. Which of thefollowing are vaid SAS data set names?
Census90
Census 90
CEN_90
CEN*90

cen-90

SAS Workbook for Writing SAS Programs to Process Data on UNIX 15

16 SAS Workbook for Writing SAS Programs to Process Data on UNIX

Running Your SAS Program

Once you have written a SAS program, then you need to "run” (or execute) the program. Executing a
program requires disk space and memory, both resources that must be shared by al userslogged on to
aUNIX computer. Because of thisit is very important to have the skills necessary to manage your
SASjobswdl. The SSCC Publication, Research Computing on SSCC UNIX Systems, will giveyou
al the information you need. Be sure you read it before executing SAS jobs utilizing large SAS data
sets.

Aswas dated earlier in "Methods for running SAS™ you may run SASin four different modes. Two
of the modes are interactive (Interactive Line Mode and Display Manager Mode) and two are
noninteractive (Noninteractive Mode and Batch Mode). Only the two noninteractive modes are
described here.

Running SAS noninteractively requires the following basic seps.

1. Using an editor to creste or edit afile containing your SAS statements.

2. Invoking SAS and executing your SAS program (in either the foreground or background).

3. Examining the output from your SAS program to ensure that no errors occurred. If errors did
occur, it may be necessary to repeat steps 1 through 3 until the job runs satisfactorily.

Once you have cregted afile of SAS commands, you are ready to execute SAS. The generd form of
the SAS command is asfollows:

sas filenane -optionl...-optionn

wheref i | enane isthe name of the file containing the SAS program to be executed. opt i on
gpecifiesa SAS system option to configure your session. Some common options include:

-linesize n Specifiesthe line sze of the SAS output. The rangeis 64 to 256.
-obs n Specifies the last observation from a data set that SAS isto read.

- pagesi ze n Specifies the number of lines that can be placed in apage of SAS outpuit.
Values can range from 15 to 32,767.

SAS Workbook for Writing SAS Programs to Process Data on UNIX 17

-norepl ace Specifiesthat SAS not replace data sets aready created.

Noninteractive Mode

To invoke SAS in noninteractive mode, enter the SAS command followed by the name of the file
containing the SAS program to be executed. For example, suppose you have stored your SAS
daementsin afilenamedf 00. sas. Toinvoke SASin noninteractive mode and execute the
progranf 00. sas you would type the following:

> sas foo

Note that you do not have to include the file extenson in the filename when the file extenson is . sas.
SASuses. sas by default.

Y ou do not get another UNIX prompt until SAS finishes executing the program. When SAS finishes
and you get the UNIX prompt, two new files are in your working directory which contain the SAS
output. f 00. | og containsthelog of the SASsessonand f 00. | st contains the output from the
SAScommandsin f 00. sas.

In the example just shown, SAS created two files: one to hold the SAS output and one to hold the log.
By default, the filenames are the same as the filename for the file containing the SAS program. If you
want to direct your output and log to other files, usethepr i nt and| og system options. For
example,

> sas foo -print report -log report.|og

After your job is executed, the output goesto thefiler epor t and thelog goesto thefile
report.| og.

Batch Mode

To execute a program in batch mode, you smply run it in the background by typing an & at the end of
the command. For thef 00. sas example aove, you would type the following:

> sas foo &
The only difference between running batch and running noninteractive is that in batch mode, your job is

executed in the background, meaning you do not have to wait until the SAS program finishes execution
before you get the UNIX prompt. In other words, your shell is available for other work.

18 SAS Workbook for Writing SAS Programs to Process Data on UNIX

SAS errors

SAS error messages, should errors occur, will be found in the log file once a program finishes
executing. SAS prints messages that enable you to verify that the

1 appropriate raw data file was read

correct number of records were read

resulting SAS data set contains the correct number of variables and observations asillugtrated in the
following SAS output:

NOTE: The infile "date.dat" is:
Fil e Name=/t np_mt/ hore/ m ntder ot / soc365/ dat e. dat ,
Onner Name=ntder not, G oup Nane=dpadmn,
Access Perm ssion=rwr--r--,
File Size (bytes)=1107

NOTE: 27 records were read fromthe infile "date.dat".
The m nimumrecord | ength was 40.
The maxi mumrecord | ength was 40.

NOTE: M ssing val ues were generated as a result of perfornmng an
operation on mssing val ues.
Each place is given by: (Nunber of Times) at(Line):(Colum).
10 at 13:23 10 at 14:9 10 at 14:24 10 at 14:35

NOTE: The data set WORK DATE has 27 observations and 7 vari abl es.

When SAS detects an error, it usualy underlines the error or underlines the point a which it detects the
error, identifying it by a number. Each number is uniquely associated with amessage. Then it enters
gyntax check mode. In syntax check mode, SAS no longer executes statements, but continues reading
gatements, checking their syntax, and underlining additiond errorsif necessary.

In abatch program, an error in aDATA step statement causes SAS to remain in syntax check mode
for the rest of the program. It doesn't execute any more DATA or PROC steps. A syntax error in a
PROC step usually affects only that step. At the end of the step, SAS writes a message for each error
detected.

Syntax errors are the most common type of errors encountered. These include misspelled keywords

SAS Workbook for Writing SAS Programs to Process Data on UNIX 19

and missing or invdid punctuation. Following are examples of common syntax errors and SASS
accompanying error messages.

Omitted semicolon:

21? proc print var height weight; run;

21 proc print var height weight; run;

202 202 202
ERROR 202-322: The option or paranmeter is not recognized.

NOTE: The SAS System stopped processing this step because of errors.

Misspelled Words:

227 proc prent; run;

ERROR Procedure PRENT not found.
NOTE: The SAS System stopped processing this step because of errors.

23? proc print; var hight weight; run;

ERROR Vari abl e H GHT not found.
NOTE: The SAS System stopped processing this step because of errors.

Unbalanced quotation marks:

1? data class; infile "class. dat;

2? input nanme $ 1-7 height 9-12 weight 14-18 age 20-21;
3? run;

4? proc neans; var height wei ght age;

5? out put out=tenp nean=nhei ght maei ght nage;

6? run;

7? proc print; var mhei ght maei ght nage; run;

8? proc contents data=cl ass; run;

WARNI NG The current word or quoted string has become nmore than 200 characters
long. You nmay have unbal anced quotation narks.

Dataerrors:

SAS detects errors in the data.and prints error messages when:

20 SAS Workbook for Writing SAS Programs to Process Data on UNIX

invalid data are found in afidd

I illegd arguments are used in functions

I impossible mathematical operations are requested.
When adata error is encountered, SAS

1 assgnsamissng vaue to the gppropriate variable

prints a note that describes the error

displays the input record being read

displaysthe valuesin the SAS observation being created

continues reading.
Thefollowing SAS code results in a data error:

247? data class; infile "class.dat";
25? input nanme $ 1-7 height 5-12 weight 14-18 age 20-21;
run;

The output follows.

NOTE: The infile "class.dat" is:

Fi | e=/ t np_mt / home/ mi ntder not / soc365/ cl ass. dat
NOTE: Invalid data for HEIGHT in line 1 5-12.
RULE:
s e B R i T e e el R Sy 4
1 Alfred 69.0 112.5 14 21
NAMVE=Al fred HEl GHT=. WEI GHT=112.5 AGE=14 ERROR =1 N =1
NOTE: Invalid data for HEIGHT in line 2 5-12.
2 Alice 56.5 84.0 13 21
NAMVE=Al i ce HElI GHT=. VI GHT=84 AGE=13 ERROR =1 N =2
NOTE: Invalid data for HEIGHT in line 3 5-12.
3 Barbara 65.3 98.0 13 21
NAVE=Bar bar a HEl GHT=. WElI GHT=98 AGE=13 ERRCR =1 N =3
NOTE: Invalid data for HEIGHT in line 4 5-12.
4 Car ol 62.8 102.5 14 21
NAVE=Car ol HElI GHT=. WElI GHT=102.5 AGE=14 ERROR =1 N =4
NOTE: Invalid data for HEIGHT in line 5 5-12.
5 Henry 63.5 102.5 14 21

SAS Workbook for Writing SAS Programs to Process Data on UNIX 21

NAMVE=Henry HEI GHT=. WEl GHT=102.5 AGE=14 ERROR =1 N =5
NOTE: Invalid data for HEIGHT in line 20 5-12.
20 Wlliam66.5 112.0 15 21
NAMVE=W | | i am HEI GHT=. WEI GHT=112 AGE=15 ERROR =1 _N =20
NOTE: 20 records were read fromthe infile "class.dat".
The mnimumrecord | ength was 21.
The maxi mumrecord | ength was 21.
NOTE: The data set WORK CLASS has 20 observations and 4 vari abl es.

Y ou can avoid many errors by smply taking the time to read over your SAS program before you
submit it. In particular, check the following:

1 All SAS gatements end in a semicolon; be sure you haven't omitted any semicolons or accidentally
typed the wrong character.

Any garting and ending quotes must match; you can use either single or double quotes.

Most SAS statements begin with a SAS keyword. (Exceptions are the assgnment statements and
sum statement. Be sure you haven't misspelled or omitted any of the keywords.

Every DO statement must be followed by an END statement.

Y ou can ask SAS to check the syntax of your program without actudly reading the data. Thisis
particularly useful if you have a program that reads alot of data and thus requires alot of CPU time. To
have SAS check the syntax of your program, invoke SAS with the following system options:

> sas foo -noreplace -obs 0

The- obs option identifiesthe last record to read in the data. In this caseit is set to zero so no data
areread. - nor epl ace ingructs SAS not to replace any SAS data sets.

If your log file contains errors, you will first need to correct them and then resubmit thejob. To correct
errors, you smply edit the origind command file (Not the log file!).

22 SAS Workbook for Writing SAS Programs to Process Data on UNIX

Exercise 2

The purpose of this exerciseisto get you familiar with the sepsinvolved in writing and running a SAS
program.

1.

Invoke EMACS and create anew file called sas_ex2.sas by typing the following at the UNIX
prompt:

enacs sas_ex2. sas

Typein thefadlowing SAS command file

dat a cl ass;

infile "/users/dl/ ncdernot/soc365/cl ass. dat";
i nput name $ hei ght wei ght age;

run;

proc print; run;

Save your file and exit EMACS by typing <CNTRL>X <CNTRL>C.

Run your SAS jab by typing the following at the UNIX prompt:

sas sas_ex2

When your program finishes, display the log file on your screen using the following command:
nore sas_ex2. | og

If you find any errorsin your log file, go back into EMACS, correct any mistakes, and then rerun
your program.

Onceyour log fileis error free, digplay the output file on your screen by typing the following
command:

nmore sas_ex2. | st

SAS Workbook for Writing SAS Programs to Process Data on UNIX 23

24 SAS Workbook for Writing SAS Programs to Process Data on UNIX

Creating SAS Data Sets

The fird and often most difficult task in data andyssis getting your data into aform that the software
package can recognize and handle. Once your dataare in that form, it isrelatively easy to andyze them
and generate reports. To create a SAS data set, you must write a program of SAS statements, which

instruct SASto perform specific tasks. The following SAS statements are used to create a SAS data
et

1 the DATA datement
1 the INPUT statement
1 the CARDS or INFILE statement

To understand how to use SAS statements, you first need to know how SAS creates a SAS data set:

1 |t readsthe DATA statement, creates the structure of a SAS data set, and marks the statement as

the point to begin processing for each dataline. Y ou can think of the DATA statement asthe
beginning of a DO loop.

It usesthe description in the INPUT statement to read the data line and produce an observation.

It uses the observation to execute any other SAS statements that are present like assignment
gtatements or |F-THEN/EL SE statements.

It adds the observation to the data set being crested.

The statements are executed once for each dataline.

DATA Statement

A SAS DATA gaement ingtructs SAS to create and name a SAS data set. DATA statements begin
with the keyword DATA and specify the name you select for the data set. For example, the following
DATA statement instructs SAS to create a SAS data set named CPS90:

DATA CPS90;

The rulesfor naming SAS data sets are listed above in the section, "Rules for SAS Names'.

SAS Workbook for Writing SAS Programs to Process Data on UNIX 25

INPUT Statement

The INPUT statement provides the information SAS requires to organize datainto a SAS data s,
such as each variable's name, type, and, if necessary, column location. INPUT statements follow the
DATA datement asin the following example:

i nput name $ 1-7 height 9-12 weight 14-18 age 20-21;
The"$' after avariable nameis used to denote a character variable.

SAS provides you with three basic input styles: list, column, and formatted. These styles may be used
individualy or in combination with each other. Formatted input is used in specid Stuations when the
data contain nonstandard numeric or character vaues and are not discussed here.

List Input

Ligt input uses the smplest form of the INPUT statement and may be used when each datavaueis
separated from the next by at least one blank space. The generd form of the INPUT statement with
the ligt input method is:

| NPUT vari abl el variable2 ... variablen;

wherevar i abl e isthevdid SAS name that identifies the variable. Notice that you do not give
column locations with list input. For example:

i nput nanme $ height weight age;
cards;

Al fred 69.0 112.5 14

Alice 56.5 . 13

Bar bara 65. 3 98.0 13

Car ol 62.8 102.5 14
run;

The"$" isused to indicate a character variable.
Ligt input is very convenient and smpleto use. Keep in mind though, the following restrictions:

1 Fedsmust be separated by at least one blank.

26 SAS Workbook for Writing SAS Programs to Process Data on UNIX

Felds must be specified in order.

Missng vaues must be represented by a place holder such asaperiod (.). (A blank field causes
the matching of variable names and valuesto get out of sync.)

Character values cannot contain embedded blanks.

Varidble values must contain eight or fewer characters. A longer vaueis truncated.

Column Input

Column input is the most common method of entering data and is appropriate when the data vaues
occupy the same fidds within each record. The genera form of the INPUT statement with the column
input method is:

| NPUT vari abl el startcol -endcol ... variabl en
startcol - endcol ;
wherevar i abl e isthevdid SAS name thet identifiesthe varidble, st ar t col identifiesthe
beginning of theinput fidld, andendcol identifiesthe end of theinput fied.

When using column input you are not required to indicate missing values with a placeholder such asa
period aswith ligt input:

data cl ass;
i nput name $ 1-7 height 9-12 weight 14-18 age 20-21;

cards;
Alfred 69.0 112.5 14
Alice 56.5 84.0 13
Car ol 62.8 102.5 14
Henry 63.5 102.5 14
Janes 57.3 83.0
Radhi ka 50. 2 13

run,

One advantage of usng column input over smplelist input isthat it dlows character variables to contain
embedded blanks as in the example below:

data cl ass2;
i nput name $ 1-15 sex $ 16 height 17-20 wei ght 22-26 age
28-29;
cards;

SAS Workbook for Writing SAS Programs to Process Data on UNIX 27

Al fred Loy M69.0 112.5 14
Alice Kufeld F56.5 84.0 13
Bar bara Weks F65.3 98.0 13
Car ol Wl ffe F62.8 102.5 14

The above example d <o illustrates two other advantages of column input over list input:

1 variable vaues can be over eight characters.

1 datavaues need not be separated from the next vaue by blanks.

Column input dso dlowsfidds to be skipped atogether or to be read in any order. Using column input
to read the same CLASS2 data above, you can cause the vaue for the variable WEIGHT to be
omitted dtogether with the following INPUT statement:

i nput name $ 1-15 sex $ 16 height 17-20 age 28-29;

28 SAS Workbook for Writing SAS Programs to Process Data on UNIX

Exercise 3

Write an INPUT gtatement for the following data using list input and then column input:

1 2 3
----5----0----5----0----5----0----5----0
norphine n .04 .20 .10 .08
nmorphine n .02 .06 .02 .02
nmorphine n .07 1.40 .48 .24
morphine n .17 .57 .35 .24
nmor phiney .10 .09 .13 .14
norphine y .12 .11 .10 .
nmorphiney .07 .07 .06 .07
morphine 'y .05 .07 .06 .07
trimeth n .03 .62 .31 .22
trimeth n .03 1.05 .73 .60
trimeth n .07 .83 1.07 .80
trimeth n .09 3.13 2.06 1.23
trimeth y .10 .09 .09 .08
trimeth y .08 .09 .09 .10
trimeth y .13 .10 .12 .12
trimeth y .06 .05 .05 .05

SAS Workbook for Writing SAS Programs to Process Data on UNIX

29

Mixed Input

Once you begin an INPUT gtatement in a particular style, you are not restricted to using that style
adone. You can mix input Sylesin asngle INPUT statement aslong as you mix them in away that
appropriately describes the records of raw data. For example:

data cl ass2;

i nput name $ 1-15 sex $ 16 height 17-20 wei ght age;
cards;
Al fred Loy M69.0 112.5 14
Alice Kufeld F56.5 84.0 13
Bar bara Weeks F65.3 98.0 13
5 14

Car ol Wl ffe F62.8 102.

The varidblesNAME, SEX, and HEIGHT are read with column input and the variables WEIGHT and
AGE are read with list input.

30 SAS Workbook for Writing SAS Programs to Process Data on UNIX

Exercise 4

Write an INPUT gtatement for the following data using mixed input:

nmorphine n .04 .20 .10 .08
morphine n .02 .06 .02 .02
nmorphine n .07 1.40 .48 .24
morphine n .17 .57 .35 .24
norphine y .10 .09 .13 .14
norphine y .12 .11 .10

nmorphine y .07 .07 .06

morphine y .05 .07 .06 .07

trimethinen .03 .62 .31 .22
trimethinen .03 1.05 .73 .60
trimethinen .07 .83 1.07 .80
trimethinen .09 3.13 2.06 1.23
trimethiney .10 .09 .09 .08
trimethiney .08 .09 .09 .10
trimethiney .13 .10 .12 .12
trimethiney .06 .05 .05 .05

N -

SAS Workbook for Writing SAS Programs to Process Data on UNIX 31

Reading from the Same Record Twice

Sometimes you may need to tell SAS to hold arecord and read from it again. Thisis useful when you
need to test a condition before creating an observation from adata record. For example, to create a
SAS data set that is a subset of alarger group of records, you may need to test for a condition before
deciding if a particular record should be used to create an observation in the data set you want to
crete. Placing thetrailing at-sign (@) before the semicolon at the end of an INPUT statement instructs
SASto hold the current data line in the input buffer so it is available for a subsequent INPUT statement.
Y ou can et up this process by following these steps.

1. Usean INPUT statement to read a record.

2. Useatraling @ & the end of the INPUT statement to hold the record in the input buffer for the
execution of the next INPUT statement.

3. UseanIF gatement or SELECT group (discussed later) to test for a condition.
4. If the conditionis met, use INPUT again to read the record to creste an observation.

To read from arecord twice, you must prevent a new record from automatically being read into the
input buffer when the second INPUT statement is executed. Use of atrailing @ in the first INPUT
Statement serves this purpose.

For example, the CLASS2 data contain information about both males and females. The following data
step creates a SAS data set that contains only females:

data cl ass2;
i nput sex $ 16 @
i f sex="F";
i nput name $ 1-15 height 17-20 wei ght 22-26 age 28-29;
InthisDATA step the following actions occur:

1 Thefirs INPUT statement reads arecord into the input buffer and assgns the variable SEX.

The IF statement alows the current iteration of the DATA step to continue only when the vaue of
SEX isF. When it isnot, the current iteration stops and SAS returns to the top of the data set and
releases the held record from the input buffer.

The second INPUT statement executes only when the value of SEX isF. It does not cause anew

32 SAS Workbook for Writing SAS Programs to Process Data on UNIX

record to be read into the input buffer.

Following isthe SAS data set created by the above example:

1? data cl ass2;

2? input sex $ 16 @
3? if sex="F";
4? input nane $ 1-15 hei ght 17-20 wei ght 22-26 age 28-29
57? cards
6> Al fred Lay M69.0 112.5 14

7> Alice Kufeld F56.5 84.0 13
8> Barbara Weks F65.3 98.0 13
9> Caro Wl ffe F62.8 102.5 14

10>

NOTE
NOTE

The data set WORK. CLASS2 has 3 observations and 5 vari abl es

DATA st at ement used
real tine 0. 979 seconds
cpu tine 0. 270 seconds

11? proc print; run

aBS SEX NANVE HEl GHT
1 F Alice Kufeld 56.5
2 F Bar bar a Weks 65.3
3 F Car ol Wl ffe 62.8

NOTE: PROCEDURE PRI NT used:

real tine 0. 402 seconds
cpu tine 0. 080 seconds

VEEI GHT
84.0
98.0

102.5

ACE
13
13
14

SAS Workbook for Writing SAS Programs to Process Data on UNIX

33

Exercise 5

Modify the following data step to read in only observations with DOSE < 40 using the methods
described above:

DATA PROBI T,
| NPUT prep $ 1-5 dose 11-12 synptons $ 19-24 n 30-31;
CARDS;

st and 10 None 33
st and 10 MId 7
st and 10 Severe 10
st and 20 None 17
st and 20 MIld 13
st and 20 Severe 17
st and 30 None 14
st and 30 MIld 3
st and 30 Severe 28
st and 40 None 9
st and 40 MIld 8
st and 40 Severe 32
t est 10 None 44
t est 10 MId 6
t est 10 Severe 0
t est 20 None 32
t est 20 MIld 10
t est 20 Sever e 12
t est 30 None 23
t est 30 MIld 7
t est 30 Severe 21
t est 40 None 16
t est 40 MIld 6

t est 40 Severe 19

34 SAS Workbook for Writing SAS Programs to Process Data on UNIX

Reading Multiple Records to Create a Single Observation

Consider the Situation where you have severd records containing dl the information to congtruct a
sngle observation. Consder again the CLASS data but assume the data are entered in such away that
information about a single person is Soread across severd records, asin:

Al fred
69.0 112.5
14

Bar bar a
65.3 98.0
13

Car ol

62.8 102.5
14

ingtead of in Sngle records as shown earlier:

Afred 69.0 112.5 14
Barbara 65.3 98.0 13
Car ol 62.8 102.5 14

There are severd waysto read these datainto SAS but perhaps the best way is with the #n line-pointer
control. The #n line-pointer control character forces the pointer to go to the nth line in the input buffer.
The following example uses the #n line-pointer control to read in the data above:

dat a cl ass;
input nane $ 1-7
#2 hei ght 1-4 weight 6-10
#3 age 1-2;
car ds;
Al fred
69.0 112.5
14
Bar bar a
65.3 98.0
13
Car ol
62.8 102.5
14

SAS Workbook for Writing SAS Programs to Process Data on UNIX 35

CARDS and INFILE Statements

When you include the raw dataiin your SAS program you use the CARDS statement to inform SAS
that data linesimmediately follow. The CARDS statement follows the INPUT gstatement. When the
raw data are stored on disk, you must tell SAS where to find the data by using an INFILE statement.
INFILE statements begin with the keyword INFILE, which is followed by the name of the file
containing the data. Asthe following exampleillustrates, INFILE statements precede INPUT
gatements.

data cl ass;
infile "~/soc365/cl ass. dat";
i nput name $ 1-7
#2 hei ght 9-12 weight 14-18
#3 age 20-21;
run;

The name of the file mugt be enclosed in quotes. The file specification must be avalid path name to the
externd file you want to access, therefore the level of specification required depends on your location in
the directory structure. Following are examples of vaid file specifications.

infile 'class.dat';
infile '~/sascl ass/cl ass. dat';

Note: SAS can also read compressed data. Refer to SSCC Pub. #7-4, Using SASon UNIX, for
detailed ingtructions.

36 SAS Workbook for Writing SAS Programs to Process Data on UNIX

Exercise 6

Use an editor to create the following datafilecaled mul t i pl e. dat :

1
2
2
1
2
4

Each obsarvation is contained in two records. The first record contains vaues for three variables:;

10 22
500
3 10
1000
6 7

HHTYPE, HHSIZE, and REGION. The second record contains KIDSLT6 and WEEKSLY. Write
aSASprogram, mul ti pl e. sas, that creates a SAS data set named HOUSE.

SAS Workbook for Writing SAS Programs to Process Data on UNIX

37

38 SAS Workbook for Writing SAS Programs to Process Data on UNIX

Modifying Data using SAS Statements

Although many SAS data steps consst smply of DATA, INPUT, CARDS, or INFILE statements,
SAS provides numerous optiond statements that enable you to modify data. For example, some
satements create new variables, delete observations, or perform specific tasks based on certain
conditions. These modifications can be made at the time the SAS data set isfirst crested or later using
the SET datement. In this chapter you will learn about many waysto modify SAS data setsusing SAS
gatements. Then, in the next chapter, you will use these techniques to read hierarchical files.

Using Assignment Statements

SAS enables you to create variables and modify existing variable vaues with assgnment statements.
Assgnment statements appear after the INPUT statement as shown below:

data cl ass;
infile "class.dat";
i nput name $ 1-7 height 9-12 wei ght 14-18 age 20-21;
ht _cm = hei ght * 2.54;

run;

Note that the assgnment statement begins with the name of the new varigble rather than aSAS
keyword. To create anew varigble with an assgnment statement, do the following:

1. Sdect anamefor the new variable.
2. Deermine the formula needed to caculate the values of the new variable.

3. Write the formulaas a SAS statement, putting the new variable name on the LEFT sde of the
equassgn.

SAS processes arithmetic operators in the same order of priority as standard mathematical expressons.
Exponentiation calculations are processed firgt, then multiplication or divison, and then addition or
subtraction.

SAS Workbook for Writing SAS Programs to Process Data on UNIX 39

SAS Functions

SAS contains many built-in expressons caled functions that you can use in your assgnment Satements.
For example, to transform WEIGHT to the naturd logarithm of WEIGHT you use the following
assignment statement:

| gwei ght = | og(wei ght);

As another example, say you want to sum up the values of HEIGHT, WEIGHT, and AGE for each
observation. 'Y ou would use the SUM function as the following exampleillustrates:

sumvars = sum(hei ght, weight, age)

The SUM function caculates the sum of its arguments, ignoring missing values. 'Y ou can aso combine
functions as the following example illugtrates.

| ogsum = | og(sum(hei ght, wei ght, age));
In generd, a SAS function performs the cal culation indicated using the data val ues within parentheses

(called arguments). Separate the arguments with commas. See the "SAS Language Guide' for a
completelig of dl the SAS functions.

Storing Numeric Variables Efficiently

Data sets used by socid scientists are typicaly very big to begin with and by the time you have crested
al your new variables using the methods described in the previous sections, the data sets are gigantic!
At some point, you may need to think about the storage space your data set occupies. There are ways
to save space when you store numeric variablesin SAS data sets. This section describes one such
method which usesthe LENGTH statement. Another method for saving space involving data
compression is discussed later in this document.

By default, SAS uses 8 bytes of storage in adata set for each numeric variable. So, if you create 500
variables (whichisnot at al out of the ordinary), that is 4000 bytes. When numeric variables contain
only integers, you can often shorten them in the data set being created. For example, alength of four
bytes stores accurately al integers up to a least 2,000,000 on most operating systems. To change the
number of bytes used for each variable, use a LENGTH statement.

40 SAS Workbook for Writing SAS Programs to Process Data on UNIX

A LENGTH gtatement contains the names of the variables followed by the number of bytesto be used

for their storage. For example, say your data set contains three integer fields. To create three variables

INTL, INT2, and INT3 with length 4 bytes you would include the following statement in your data step:
l ength intl int2 int3 4;

If your data contain smdl integers like dummy variables for example, you could reduce their length even
further:

l ength intl-int3 4 duml dun? 2;

Warning: You can safely shorten variables containing integers, but do not shorten variables containing
fractions as this can dter the fraction sgnificantly.

SAS Workbook for Writing SAS Programs to Process Data on UNIX 41

Exercise 7

Modify the following data step to store the numeric variables more efficiently usng aLENGTH
datement. Cregte anew variable, LDOSE, that is the natural logarithm of DOSE. Cregte anew
variable that is equivaent to DOSE divided by 10.

DATA PROBI T;

| NPUT prep $ dose synptons $ n;
CARDS;
st and 10 None 33
st and 10 MIld 7
st and 10 Severe 10
st and 20 None 17
st and 20 MIld 13
st and 20 Severe 17
st and 30 None 14
st and 30 MId 3
st and 30 Severe 28
st and 40 None 9
st and 40 MIld 8
st and 40 Severe 32
t est 10 None 44
t est 10 MIld 6
t est 10 Severe 0
t est 20 None 32
t est 20 MIld 10
t est 20 Severe 12
t est 30 None 23
t est 30 MId 7
t est 30 Severe 21
t est 40 None 16
t est 40 MIld 6

t est 40 Sever e 19

42 SAS Workbook for Writing SAS Programs to Process Data on UNIX

Using IF-THEN/ELSE Statements

Suppose you want to carry out an action for specific observationsin adataset. You can use an
IF-THEN statement to test observations to determine if certain conditions are true or false. If the
condition istrue, SAS carries out the action specified in the THEN clause. If the condition isfase,
SAS continues to the next statement. The generd form of an IFFTHEN satement is.

IF condition THEN st at enent;

For example, to separate the people in the CLASS data set into two groups based on age, submit the
following satements

data cl ass;
infile "class.dat";
i nput name $ 1-7 height 9-12 wei ght 14-18 age 20-21;
ht _cm = hei ght * 2.54;
if age < 12 then agegroup=1;
i f age >= 12 then agegroup=0;
run;

An IF condition can be a smple comparison of avariable and avaue, acomparison of two or more
variables, or a comparison of severa variables or vaues joined by AND and OR operators, asin the
following examples

if age>20 then del ete;

if sex="F" and wei ght gt 110 then size="small";
i f name="Nancy" or name="Art" then delete;

if weight e 120;

DELETE in the examples above cause observations meeting the condition to be deleted from the data
st Thelast IF statement above is an example of what SAS calls a subsetting |F statement. Subsetting
|F statements contain only a condition. The implicit action in a subsetting IF Satement is dways the
same: if the condition istrue, continue processing the observation; if the condition isfase, sop
processing the observation and return to the top of the DATA step for a new observation.

AND and OR logica operators require you enter a variable name each time you enter a corresponding
value. Thelast example written:

i f name="Nancy" or "Art" then delete;

SAS Workbook for Writing SAS Programs to Process Data on UNIX 43

would NOT produce the desired effect.

EL SE statements are used after IF-THEN statements to provide dternate actions when an IF condition
isfdse. If acondition isfdse, SAS omits the THEN action and continues to the next statement. ELSE
gatements enable you to specify what you want the system to do if a condition isfdse. For the example
above separaing people into two groups based on age, rewriting it with an EL SE statement would
result in the following:

dat a cl ass;
infile "class.dat";
i nput name $ 1-7 height 9-12 weight 14-18 age 20-21;
ht _cm = hei ght * 2.54;
if age < 12 then agegroup=1;
el se agegr oup=0;
run;

Using an EL SE statement after an IFF-THEN statement provides ONE aternative action when the IF
conditionisfase. However, many casesinvolve a series of mutudly exclusive conditions, each of
which requires a separate action. For example, suppose you want to classify the agesinto three age
groups, 1, 2, and 3. Inthat case, write aseries of IF-THEN and EL SE statements.

if age < 12 then agegroup=1;
else if age < 15 then agegroup=2;
el se agegroup=3;

44 SAS Workbook for Writing SAS Programs to Process Data on UNIX

Exercise 8

Write an IF-THEN/EL SE statement for the following data step that creates two new variables, DUM1,
that is equd to one when SYMPTOMS equas "None"' and is zero otherwise, and DUM2, that is equal

to one when SYMPTOMS equds "Mild" and is zero otherwise.

| NPUT prep $ dose synptons $ n;

DATA PROBI T;
CARDS;
st and 10
st and 10
st and 10
st and 20
st and 20
st and 20
st and 30
st and 30
st and 30
st and 40
st and 40
st and 40
t est 10
t est 10
t est 10
t est 20
t est 20
t est 20
t est 30
t est 30
t est 30
t est 40
t est 40
40

t est

None
MIld
Severe
None
MId
Severe
None
MId
Severe
None
MIld
Sever e
None
MIld
Severe
None
MId
Severe
None
MId
Severe
None
MIld
Sever e

33
7
10
17
13
17
14
3
28
9
8
32
44
6
0
32
10
12
23
7
21
16
6
19

SAS Workbook for Writing SAS Programs to Process Data on UNIX

45

Using Do Groups

Suppose you need to change severd different variable's vaues for some given condition. For example,
suppose you have income data over a period of years and you want to adjust the income depending on
the person's sex. Oneway to do thisisto write aseries of IFF-THEN statements:

if sex ='F then salary70=sal ary70*1. 11;
if sex ='M then sal ary70=sal ary70*0. 78;
if sex = 'F then sal ary80=sal ary80*1. 23;
if sex ='M then sal ary80=sal ary80*0. 67;
if sex ='F then sal ary90=sal ary90*1. 12;
if sex = 'M then sal ary90=sal ary90*0. 87;

To avoid writing the IF condition twice for each sex, use a DO group asthe THEN clause, asthe
following example illudtrates

if sex ='F then do;
sal ary70=sal ary70*1. 11;
sal ary80=sal ary80* 1. 23;
sal ary90=sal ary90*1. 12;

end;

else if sex ='M then do;
sal ary70=sal ary70*0. 78;
sal ar y80=sal ar y80*0. 67;
sal ar y90=sal ar y90*0. 87;

end;

The DO gatement causes dl statements following it to be treated as a unit until a matching END
datement gppears. A group of SAS statements beginning with DO and ending with END iscdled a
DO group.

Using the DO group makes the program faster to write and easier to read. It dso makes the program
more efficient for SASin two ways.

1. ThelF conditionisevauaed fewer Times. (Although there are more satementsin this
example than in the preceding one, the DO and END statements require very few computer
resources.

2. Theconditionssex = 'F' andsex = 'M aemutudly exclusve, as condensng the
multiple IF-THEN statements into two statements reveals. 'Y ou can make the second |-
THEN statement part of an EL SE statement; therefore, the second |F condition is not evaluated
when the firgt conditionistrue.

46 SAS Workbook for Writing SAS Programs to Process Data on UNIX

Performing the Same Action for a Series of
Variables

Supposg, like in the previous section, you need to change severd different variable's values for some
given condition. But thistime, suppose you need to perform the same action for each of the variables.
For example, suppose you want to use the same adjustment for each of the three income variables
depending on the person's sex. Oneway to do thisisto write aseries of IFF-THEN Statements, as

follows

i f
i f
i f
i f
i f
i f

sex
sex
sex
sex
sex
sex

Fl

‘M

Fl
M
Fl

‘M

t hen
t hen
t hen
t hen
t hen
t hen

sal ary70=sal ary70*1
sal ary70=sal ary70*0.
sal ary80=sal ary80*1.
sal ary80=sal ary80*0.
sal ary90=sal ary90*1
sal ary90=sal ary90*0.

11;
78;
11;
78;
11;
78;

The pattern of action is the same for each sex in their three IFTHEN statements; only the variable
name is different. 'Y ou can make the program easier to read by telling SAS to perform the same action
severa Times, changing only the variable affected. Thetechniqueis caled array processing, and the
following sections explain it in athree-step process:

1. grouping varidblesinto arrays

2.

repesating the action

3. sdecting the current variable to be acted upon.

Grouping Variables into Arrays

To define an array, usean ARRAY datement. A smple ARRAY statement has the following form:

ARRAY array-name {number-of-variables} variable-1 ... variable-n;

The array-nameisa SAS name you choose to identify the group of variables. The number -of-
variables, enclosed in braces, tdls SAS how many variables you are grouping, and variable-1 ...

SAS Workbook for Writing SAS Programs to Process Data on UNIX 47

variable-n ligs their names. For example, the following SAS statement creates an array cdled
SALARY for thethree sdary variables.

array salary {3} salary70 sal ary80 sal ary90;

Liging avaridblein an ARRAY gatement assigns the variable an extra name with the form array-
name{position}, where position isthe pogtion of the varidbleinthelist (1, 2, or 3inthiscase). The
position can be a number or the name of a variable whose vadue is the number. This additiond nameis
cdled an array reference, and the pogition is often called the subscript. The previous ARRAY
satement assigns SALARY 70 the array reference SALARY{1}; SALARY 80, SALARY{2}; and
SALARY 90, SALARY{3}. From that point in the data step, you can refer to the variable by either its
origina name or by itsarray reference. For example, the names SALARY 80 and SALARY{2} are
equivaent.

Repeating the Action
To tell SASto perform the same action severd times, use an iterative DO loop of the following form:

DO index-variable = 1 TO number-of-variables-in-array;
SAS statements
END;

An iterative DO loop begins with an iterative DO statement, contains other SAS statements, and ends
with an END statement. The loop is processed repestedly (iteratively) according to the directionsin
the iterative DO statement. The iterative DO statement contains an index-variable whose name you
choose and whose vaue changesin each iteration of theloop. In array processing, you usudly want
the loop to execute as many times asthere are variables in the array; therefore, you specify the values
of index-variable are 1 TO number-of-variables-in-array. By default, SAS increases the vaue of
index-variable by 1 before each new iteration of the loop. When the number becomes greater than
number-of-variables-in-array, SAS stops processing the loop. By default, SAS adds the index
variable to the data set being created.

An iterative DO loop that processes three times and has an index variable named COUNT looks like
this

do count =1 to 3;
SAS gatements
end;

48 SAS Workbook for Writing SAS Programs to Process Data on UNIX

Selecting the Current Variable

Now that you have grouped the variables and know how many times the loop will be processed, you
can tell SASwhich variable in the array to usein each iteration of the loop. Recall that variablesin an
array can beidentified by their array references and that the subscript of the reference can be avariable
name aswell asanumber. Therefore, you can write programming statements in which the index
variable of the DO loop is the subscript of the array reference, in other words, array-name{index-
variable}. When the value of the index variable changes, the subscript of the array reference (and,
therefore, the variable referenced) aso changes.

The following statement uses COUNT as the subscript of array references:
if sex = '"'F then salary{count} = salary{count}*1.11;

Y ou can place this statement inside an iterative DO loop. When the value of COUNT is 1, SASreads
the array reference as SALARY{ 1} and processes the IFF-THEN statement on SALARY{ 1}, that is,
SALARY70. The same thing happenswhen COUNT hasthevaue 2 or 3. The complete iterative
DO loop with array references and array statement looks like this:

array sal ary{3} salary70 sal ary80 sal ary90;
do count =1 to 3;

If sex = "F" then sal ary{count}=sal ary{count}*1.11;

else if sex = "M then sal ary{count}=sal ary{count}*0.78,;
end;

SAS Workbook for Writing SAS Programs to Process Data on UNIX 49

Exercise 9

Use array processing to multiply each of the yr variables by 2 for ID's 1-5 and divide each of the yr
variablesby 2 for ID's 11-15.

dat a unenpl oy;

input id yr85-yr92;

cards;
1 29 26 34 29 40 35 76 64
2 84 54 41 40 136 67 74 58
3 87 66 47 37 70 56 63 55
4 80 70 53 27 68 37 49 38
5 79 48 63 53 66 48 43 29
11 113 81 88 48 84 37 91 57
12 108 92 71 49 81 72 55 52
13 123 108 59 49 121 101 98 42
14 57 43 47 28 102 56 95 55
15 82 76 80 35 84 73 50 50

50 SAS Workbook for Writing SAS Programs to Process Data on UNIX

Using SET Statements

Until now the INPUT statement has described raw data stored on disk or as part of the SAS program.
SAS dso enables you to creaste anew SAS data set using observations from an existing SAS data .
To retrieve data from an existing data set, use the SET statement. Smply enter the word SET instead of
the INPUT gtatement, CARDS statement, and data lines, or in place of the INPUT and INFILE
Satements.

In the example below, the DATA statement prompts SAS to create a new data set named CLASS2.
The SET statement tells SAS to retrieve data from the existing data set CLASS. CLASS2 is an exact
copy of CLASS.

data cl ass2; set class; run;

Reading Selected Observations

If you want to retrieve only sdlected observations from the original data set rather than all the data, use
the subsetting |F Statement:

data cl ass?2;
set cl ass;
/* subsetting IF statenment */
I f age < 12;
ht squar = hei ght ** 2;

Note: The phrase marked with dashes and asterisksis a comment. Comment statements alow you to
document your program, but they have no effect on processng. An dternaive way of writing the
above comment is:

* subsetting IF statenent;

The asterisk marks the beginning of the comment and the semicolon ends the comment.

Reading Selected Variables

SASdlowsyou to create a subset of alarger data set not only by excluding observations but also by
specifying which variables you want the new data set to contain. InaDATA step you can usethe SET

SAS Workbook for Writing SAS Programs to Process Data on UNIX 51

statement and the KEEP= or DROP= data set options (or DROP or KEEP statements) to create a
subset from by specifying which variables you want the new data et to include.

As an example, use the KEEP= data set option to create a SAS data set that contains only the
variables NAME and AGE in the CLASS data st

data cl ass3;
set cl ass(keep=nane age);
run;

The KEEP= option must be enclosed in parentheses following the name of the SAS data set.
Y ou can aso use the KEEP statement to produce the same data s&t, as illustrated here:

data cl ass3;

set cl ass;
keep nane age;
run;

Use the DROP= option or DROP statement to create a subset of alarger data set when you want to
specify which variables are being excluded rather than the ones being included. 'Y ou may base your
decison to use DROP or KEEP on which method allows you to specify fewer variables.

Concatenating SAS Data Sets

Y ou can dso use the SET statement to concatenate two or more SAS data sets one after the other into
asgngle SASdataset. The number of observationsin the SAS data set is the sum of the number of
observationsin the origina data sets.

To concatenate two SAS data sets, smply list them in the SET statement. The observations from the
fird data set you name in the SET statement appear first in the new data set; the observations from the
second data set follow those from the firgt data set, and so on. For example:

data all;
set one two;

The dataset ALL contains dl the observations for data set ONE followed by al the observations for
data set TWO.

Y ou may want to concatenate data sets when not al variables are common to the data sets named in
the SET gtatement. In this case, the new data set includes dl variables from the SAS data sets named

52 SAS Workbook for Writing SAS Programs to Process Data on UNIX

inthe SET gatement. Observations corresponding to variables not found in the origina data set are
assigned missing values.

SAS Workbook for Writing SAS Programs to Process Data on UNIX 53

Exercise 10

Using the PROBIT data from the previous exercise, create anew SAS data set named PROBIT2 that
uses a subsetting |F statement to read in only observations with DOSE < 40 and drop the variable
PREP from the newly created SAS data s&t.

54 SAS Workbook for Writing SAS Programs to Process Data on UNIX

Using a Value in a Later Observation

SAS can retain avaue from the current observation to use in future observations with the RETAIN
gsatement. When the processing of the data step reaches the next observation, the held value
represents information from the previous observation. RETAIN has the following form:

RETAIN variable-1 ... variable-n;

Suppose you want to identify the oldest person in the CLASS data set. In order to do this with the
RETAIN gstatement (there are other ways to do this, by the way), you need to compare the age in one
observation with the age in the next observation, cregte aretained variable (named HOLDAGE, in the
example that follows), and assign the current vaue of agetoit. Therefore, in the next observation
HOLDAGE contains the vaue of AGE from the previous observation, and you can compare its vaue
to that of AGE:

dat a ol dest;

set cl ass;

retai n hol dage

if age > hol dage t hen hol dage=age
run

Bdow isthe contents of OLDEST:

cBS NAVE HEl GHT VEI GHT AGE HOLDAGE
1 Al fred 69.0 112.5 14 14
2 Alice 56.5 84.0 13 14
3 Bar bar a 65. 3 98.0 13 14
4 Car ol 62.8 102.5 14 14
5 Henry 63.5 102.5 14 14
6 Jamnes 57.3 83.0 12 14
7 Jane 59.8 84.5 12 14
8 Janet 62.5 112.5 15 15
9 Jeffrey 62.5 84.0 13 15
10 John 59.0 99.5 12 15
11 Joyce 51.3 50.5 11 15
12 Judy 64.3 90.0 14 15
13 Loui se 56. 3 77.0 12 15
14 Mary 66.5 112.0 15 15
15 Philip 72.0 150.0 16 16
16 Radhi ka 50.2 . 13 16
17 Rober t 64.8 128.0 12 16
18 Ronal d 67.0 133.0 15 16
19 Thonas 57.5 85.0 11 16

SAS Workbook for Writing SAS Programs to Process Data on UNIX 55

The vaue of HOLDAGE in the last observation isthe oldest person in the class. But how do you know
which person this corresponds to? Create a variable named HOLDNAME to hold the name of the
person from the observations with the oldest age. Include HOLDNAME inthe RETAIN statement to
retain its vaue until explicitly changed:

data ol dest;
set cl ass;
retai n hol dage hol dnane;
i f age > hol dage then do;
hol dage=age;
hol dnane=nane;
end;
run;

Bdow is the contents of OLDEST:

aBS NAVE HEl GHT EI GHT ACE HOLDAGE HOLDNAMVE
1 A fred 69.0 112.5 14 14 Al fred
2 Alice 56.5 84.0 13 14 Al fred
3 Bar bar a 65. 3 98.0 13 14 Al fred
4 Car ol 62.8 102.5 14 14 Al fred
5 Henry 63.5 102.5 14 14 Al fred
6 Janes 57.3 83.0 12 14 Al fred
7 Jane 59. 8 84.5 12 14 Al fred
8 Janet 62.5 112.5 15 15 Janet
9 Jeffrey 62.5 84.0 13 15 Janet
10 John 59.0 99.5 12 15 Janet
11 Joyce 51.3 50.5 11 15 Janet
12 Judy 64. 3 90.0 14 15 Janet
13 Loui se 56. 3 77.0 12 15 Janet
14 Mar y 66.5 112.0 15 15 Janet
15 Philip 72.0 150.0 16 16 Philip
16 Radhi ka 50. 2 . 13 16 Philip
17 Robert 64.8 128.0 12 16 Philip
18 Ronal d 67.0 133.0 15 16 Philip
19 Thonas 57.5 85.0 11 16 Philip

Writing Observations to Multiple SAS Data Sets

SASdlowsyou to creste multiple SAS data sets in asingle data step by specifying the data set names
on the DATA statement and then using the OUTPUT statement to direct the observations to the
appropriate data set. 1f you want to write observations to a selected data set, specify that data set

56 SAS Workbook for Writing SAS Programs to Process Data on UNIX

name directly inthe OUTPUT gatement. Any name gppearing in the OUTPUT datement must dso
gppear inthe DATA gtatement. When you use an OUTPUT gtatement without specifying a data set
name, SAS writes the current observation to dl the data sets named in the DATA statement.

For example, suppose you want to split the CLASS data set into two data sets - one for the younger
persons and one for the older persons. Name both data setsin the DATA statement and select the
observations with IF conditions. Use an OUTPUT satement in the THEN and EL SE clauses to output

the observations to the data set you specify:

dat a young ol d;
set cl ass;
I f age <= 12 then output young;
el se out put ol d;

run;

SAS Workbook for Writing SAS Programs to Process Data on UNIX 57

Exercise 11

Using the PROBIT data from Exercise 8, create two new data setsin one data step. One data set
should contain only observations corresponding to PREP equa to st and and the other should contain
only observations corresponding to PREP equd tot est .

58 SAS Workbook for Writing SAS Programs to Process Data on UNIX

SAS Workbook for Writing SAS Programs to Process Data on UNIX 59

Merging SAS Data Sets

Merging combines observations from two or more SAS data setsinto a sngle observation in anew
SASdataset. The new dataset contains al variables from dl the original data sets unless you specify
otherwise.

This chapter discusses two types of merging: one-to-one merging and match merging. In one-to-one
merging, observations are combined based on their pogitionsin theinput data sets. In match merging,
you combine observations from the input data sets based on common groups caled BY groupsin SAS.

One-to-One Merging

Y ou merge data sets using the MERGE statement in aDATA gep. The form of the MERGE statement
isasfollows

MERGE SAS-data-set-list;
where SAS-data-set-list isalist of SAS data sets to merge.

In a smple one-to-one merge, SAS combines the first observation in al data sets you name in the
MERGE gtatement into the first observation in the new data set, the second observation in dl data sets
into the second observation in the new data set, and so on. The number of observationsin the new
data sat is equd to the number of observationsin the largest data set you name in the MERGE
satement.

Suppose you have another data set in addition to the CLASS data set discussed earlier that contains
height and weight information for the same people ayear later. The following program creates the data
set CLASS2.

data cl ass2;

I nput height2 weight2 @@

car ds;
70 130 55 84 67 100 64 104 66 105
60 99 66 90 64 115 65 91 59 100
53 70 65 92 64 100 80 130 74 130

60 SAS Workbook for Writing SAS Programs to Process Data on UNIX

53 99 68 99 69 140 58 98 72 140

The following program performs a one-to-one merge of these data sets, adding the second year's deta
tothe origina data. The merged data set iscalled CLASSALL.

data cl assal | ;
merge cl ass cl ass2;
run;

The following output shows the CLASSALL data st:

aBS NANVE HEl GHT VEI GHT ACGE HEl GHT2 VEI GHT2
1 Al fred 69.0 112.5 14 70 130
2 Alice 56.5 84.0 13 55 84
3 Bar bar a 65. 3 98.0 13 67 100
4 Car ol 62.8 102.5 14 64 104
5 Henry 63.5 102.5 14 66 105
6 Janes 57.3 83.0 12 60 99
7 Jane 59.8 84.5 12 66 90
8 Janet 62.5 112.5 15 64 115
9 Jeffrey 62.5 84.0 13 65 91
10 John 59.0 99.5 12 59 100
11 Joyce 51.3 50.5 11 53 70
12 Judy 64. 3 90.0 14 65 92
13 Loui se 56. 3 77.0 12 64 100
14 Mary 66.5 112.0 15 80 130
15 Philip 72.0 150.0 16 74 130
16 Radhi ka 50. 2 . 13 53 99
17 Rober t 64. 8 128.0 12 68 99
18 Ronal d 67.0 133.0 15 69 140
19 Thomas 57.5 85.0 11 58 98
20 WIlliam 66.5 112.0 15 72 140

The output shows that the new data set combines the first observation from CLASS with the first
observation from CLASS2, the second from CLASS with the second from CLASS2, and so on.

The previous exampleillustrates the smplest case of a one-to-one merge: the data sets contain the
same number of observations and dl variables have unique names. Suppose now that the weight and
height variablesin CLASS2 were cdled HEIGHT and WEIGHT asinthe CLASS dataset. To
preserve both sets of vaues, you would need to use the RENAME= data set option to rename the
variablesin one of the data sets as the following example illugtrates:

data cl assal | ;

SAS Workbook for Writing SAS Programs to Process Data on UNIX 61

nmerge cl ass
class2 (rename=(wei ght =wei ght 2 hei ght =hei ght 2));
run;

Now suppose that CLASS2 does not contain its last observation. The following output illustirates what
the merged data set, CLASSALL, would look like in this case:

GBS NAME HElI GHT VEI GHT AGE HElI GHT2 VEI GHT2
1 Al fred 69.0 112.5 14 70 130
2 Alice 56.5 84.0 13 55 84
3 Bar bar a 65.3 98.0 13 67 100
4 Car ol 62.8 102.5 14 64 104
5 Henry 63.5 102.5 14 66 105
6 Janes 57.3 83.0 12 60 99
7 Jane 59.8 84.5 12 66 90
8 Janet 62.5 112.5 15 64 115
9 Jeffrey 62.5 84.0 13 65 91

10 John 59.0 99.5 12 59 100
11 Joyce 51.3 50.5 11 53 70
12 Judy 64.3 90.0 14 65 92
13 Loui se 56.3 77.0 12 64 100
14 Mary 66.5 112.0 15 80 130
15 Philip 72.0 150.0 16 74 130
16 Radhi ka 50. 2 . 13 53 99
17 Rober t 64.8 128.0 12 68 99
18 Ronal d 67.0 133.0 15 69 140
19 Thonas 57.5 85.0 11 58 98
20 WIliam 66.5 112.0 15

The number of observationsin the new data set is equa to the number of observationsin the largest
data s&t you name in the MERGE statement. When SAS runs out of vaues for varigblesin the shorter
data s, it fillsin missing vauesfor its varigbles.

Match Merging

In match-merging, you match observations according to the vaues of a particular variable(s). Before
you can perform amatch-merge, dl data sets must be sorted by the variables you want to use for the
merge. SASusesaBY gatement to group observations according to vaues of a particular variable.
So, aBY gatement in combination with a MERGE statement is how you accomplish match-merging.
Theform of the BY statement used for this purposeis.

62 SAS Workbook for Writing SAS Programs to Process Data on UNIX

BY variable-list;
where variable-list isthe name of a variable(s) common to al the data sets being merged.

Suppose you have athird SAS data set, CLASS3, that contains the variable NAME plus another
variable, FAM_INCM, which is the family's annua income. Suppose further that Jeffrey and Philip's
dataare missng from this data set (two less observations than CLASSALL). The following output
showsthe CLASS3 data set:

CBS NAVE FAM | NCM
1 Al fred 39
2 Alice 56
3 Bar bar a 45
4 Car ol 12
5 Henry 63
6 Janes 57
7 Jane 59
8 Janet 62
9 John 59

10 Joyce 51
11 Judy 64
12 Loui se 56
13 Mary 66
14 Radhi ka 50
15 Rober t 64
16 Ronal d 67
17 Thonas 57
18 WIliam 66

Because of these missing observations, a smple one-to-one merge would not work correctly. Some of
the sdary data would be merged with the wrong observation. With match-merging though, you can
merge these data sets correctly.

The variable common to both CLASSALL and CLASS3 isNAME. Therefore, NAME isthe
gopropriate varidble to usein the BY statement. Y ou can use the following SAS program to merge
CLASSALL and CLASSS:

dataclas inc;
merge classal class3;
by name;

run;

SAS Workbook for Writing SAS Programs to Process Data on UNIX 63

The following output shows the resulting CLASS INC data st

aBsS NANVE FAM | NCM HEI GHT VEEI GHT ACGE HEl GHT2 VEI GHT2
1 Afred 39 69.0 112.5 14 70 130
2 Alice 56 56.5 84.0 13 55 84
3 Bar bar a 45 65. 3 98.0 13 67 100
4 Car ol 12 62.8 102.5 14 64 104
5 Henry 63 63.5 102.5 14 66 105
6 Janes 57 57.3 83.0 12 60 99
7 Jane 59 59. 8 84.5 12 66 90
8 Janet 62 62.5 112.5 15 64 115
9 Jeffrey . 62.5 84.0 13 65 91
10 John 59 59.0 99.5 12 59 100
11 Joyce 51 51.3 50.5 11 53 70
12 Judy 64 64. 3 90.0 14 65 92
13 Loui se 56 56. 3 77.0 12 64 100
14 Mary 66 66.5 112.0 15 80 130
15 Philip . 72.0 150.0 16 74 130
16 Radhi ka 50 50. 2 . 13 53 99
17 Rober t 64 64. 8 128.0 12 68 99
18 Ronal d 67 67.0 133.0 15 69 140
19 Thomas 57 57.5 85.0 11 58 98
20 WIliam 66 66.5 112.0 15 72 140

The new data set contains one observation for each person and each observation contains dl the
variables from both data sets. Notice in particular the ninth and fifteenth observations. Since the
CLASS3 data set doesn't have observations for these people, the values of FAM_INCM unique to
CLASS3 aemissing.

Note that observations in the two data sets being merged were sorted smilarly. Thisisarequirement
when using the BY statement. If the observations had not be sorted, it would have been necessary to
do o prior to the merging. The procedure SORT is how you sort SAS data sets. This procedure is

discussed later in the "Using SAS Procedures’ chapter.

Only avery smple match-merge wasillugtrated in this section. To learn more about merging, refer to
"SAS Language and Procedures. Usage" Guide.

64 SAS Workbook for Writing SAS Programs to Process Data on UNIX

SAS Workbook for Writing SAS Programs to Process Data on UNIX 65

Reading Hierarchical Files

Often Timesin the socid sciencesthe datafileto beread ishierarchical. A hierarchicd fileisaspecid
case of afile that has multiple records having different formats. (Reading multiple recordsto creste a
sngle observation was discussed previoudy in the chapter, " Creating SAS Data Sets'. Ina
hierarchical file, related records of different formats occur in record groups. Take the Current
Population Surveys (CPS, for short) datafor example. There are three different record types. Thefirst
record is the household record, followed by afamily record, and then the people within family records.
Next comes another family record, if one exigts, followed again by the people within that family. Then,
after the last person in the last family in a household, comes the records corresponding to the next
household. This grouping is criticd for the congtruction of the SAS data set.

There is more than one way to congtruct SAS data sets from hierarchica files. This chapter illustrates
two methods using the CPS data: 1) Cresating asingle SAS data set, often called a"person level” data
s, that combines information from al three record types, and, 2) Creating multiple SAS data sets, one
for each of the record types, often referred to as the "household level” data s, the "family level” data
s, and the "person level" data set. Both methods make use of conditiona processing (which was
discussed in the previous chapter) to read the records accurately.

Creating a Single SAS Data Set

Often Times when you read a hierarchical file like the CPSfile you want to creste asingle SAS data set
that has an observation corresponding to each person. Each observation in the data set also contains
information pertaining to the corresponding household and family record. Usudly you will only be
interested in some subset of the data. For example, you may only want people between the ages of 25
and 65 and only a subset of the variables. Socia scientists often refer to thisas an extract. Variables
to be read are specified using INPUT statements and the appropriate observations (people between
the ages of 25 and 65) are selected with a subsetting IF statement. The end result is one SAS data set
that contains variables on households, families, and persons.

The following sections explain how to reed a hierarchicd file like the CPS file and create asingle SAS
data set in athree-step process:

1) Identify the record layout

66 SAS Workbook for Writing SAS Programs to Process Data on UNIX

2) Conditiondly read one of the three types of records

3) Write the observation to the data set after reading dl the records corresponding to a household.

ldentify the Record Layout

Begin the DATA gep and name the data set to be crested with a DATA datement. Identify the input
filewith an INFILE statement:

data hier;
infile "~/dissert/cps0390. dat";

Before you can read al the fields in arecord, you need to determine which kind of record you are
trying to read. To do so, read afield whose value identifies the type of record being read, and assign
that value to avariable. Hold this record while you decide how to read the rest of it by usng asingle
tralling a 9gn (@). Thetrailing at 9gn was discussed previoudy inthe " Creating SAS Data Sets'
chapter.

In the CPS data the value in the first column reveds the layout of the rest of the record. The following
INPUT gtatement reads this value and assigns it to the variable RECTY PE:

i nput rectype 1 @

The next step isto test the value of RECTY PE and use the results of that test to determine how to read
the rest of the record.

Conditionally Read One of the Records

After assgning to a variable the vaue that reveds the format of the record, test that value and
conditionaly execute the INPUT statement that correctly reads the rest of the record. This can be
accomplished with IFFTHEN/EL SE logic. In the following example, IFFTHEN/EL SE logic is used to
conditionaly executes the correct INPUT statement to read a record corresponding to either a
household, afamily, or a person, based on the vaue of RECTY PE (1 for household, 2 for family, and 3
for person):

if rectype = 1 then do;
i nput hhtype 20
hhsi ze 21-22
tenure 35
regi on 39

SAS Workbook for Writing SAS Programs to Process Data on UNIX 67

nsa 58;
retain hhtype hhsize tenure region nsa,

end;
else if rectype = 2 then do;
i nput famo 7-8
fam ype 9
ki dslt6 25;
retain famo fantype kidslt®6;
end;
el se i nput perno 7-8
mar st at 17
sex 20
ws 243-248;
end;

Note the two RETAIN statements in the example above. By default, values read from the previous
iterations are set to missing after each iteration. An observation, therefore, will contain only vaues for
the last detail record read. For this reason, you must override the default action of the DATA step and
control explicitly when vaues are retained with a RETAIN statement. This makesit possible to include
the household and family variablesin an observation created from the person record.

Write the Observation

The observation has now been congtructed with the variables you defined. Before writing out the
observation you may wish to subset the observations. For example, assume you only want persons
between the ages of 25 and 65. The following subsetting |F statement would accomplish this.

if (25 < age < 65);

When you use multiple iterations of the DATA step to gather the information necessary to produce a
sngle observation, you cannot use the automatic output at the end of each iteration of the DATA sep
to produce the observations you want. 'Y ou must explicitly write an observation when you have read a
detail record in arecord group. For this example, you need to output the observation after reading
each person type record. Therefore, you can use an OUTPUT statement to create an observation
each time RECTYPE isequd to 3, asthe following SAS statement illudtrates:

if rectype = 3 then output;

This completes the three step process. Following is the complete data step including the necessary
DCL gtatementsto run thisjob on VMS:

68 SAS Workbook for Writing SAS Programs to Process Data on UNIX

data hier (drop=rectype);

infile '~/dissert/cps0390. dat’;
I nput rectype 1 @
if rectype = 1 then do;
i nput hhtype 20
hhsi ze 21-22
tenure 35
regi on 39
nsa 58;
retain hhtype hhsize tenure region nsa,
end;
else if rectype = 2 then do;
i nput famo 7-8
fam ype 9
ki dslt6 25;
retain famo famtype kidslt®6;
end;
el se i nput perno 7-8
i neno 9-10
age 15-16
mar st at 17
sex 20
hi gr ade 22-23
conpl t 24
race 25
pst at 26
msupwgt 66-73 .2
uni on 139
weeksly 171-172
hour sl y 181-182
source 242
ws 243-248;
end;
If (25 < age < 65); [/* select only people 25 to 65 */

if (rectype eq 3) then output; /* keep HH with persons
*/

run,

Creating Multiple SAS Data Sets

In the previous section you read the CPS file and created asingle SAS data set that had an observation

SAS Workbook for Writing SAS Programs to Process Data on UNIX 69

corresponding to each person. In this section, you will also read the CPSfile but create three SAS
data sets from it, one for each of the record types - a"household level” data set, a"family level” data

s, and a"person level" data set.

Y ou il follow the same three basic steps when congtructing the DATA step: 1) identify the record
layout, 2) conditionaly read the records, and 3) write the observation. The only mgjor difference
between this data step and the previous data step which constructed one data set isin the placement of
OUTPUT gatements. In the case where you are creating a separate data set for each record type, you
need to include an OUTPUT statement after each record is read in directing the observation to the
gopropriate data set. If you want the variables from the household record included in the family and
person records you need to use the RETAIN statement as you did previoudy. Similarly, if you want
the variables from family record included in the person record, you need to include the second

RETAIN statement aswell. The following example illustrates the complete data step:

data hh fam |y person;
infile
I nput rectype 1 @
if rectype = 1 then do;

i nput hhtype
hhsi ze
tenure
regi on
nmsa

"~/ di ssert/cps0390. dat "' ;

20
21-22
35

39

58;

retain hhtype hhsize tenure region nsa,

out put hh;
end;
if rectype = 2 then do;
i nput famo
fant ype
ki dslt6

7-8
9
25;

retain famo famtype kidslt®6;

out put famly;
end;
el se do;

i nput perno
i neno
age
mar st at
sex
hi gr ade
conpl t
race
weeksly

7-8

9-10

15-16

17

20

22-23

24

25
171-172

70 SAS Workbook for Writing SAS Programs to Process Data on UNIX

hour sl y 181-182
ws 243-248;
out put person;
/* select only people 25 to 65 */
if (25 < age < 65);
end; run;

SAS Workbook for Writing SAS Programs to Process Data on UNIX 71

Permanent SAS Data Sets

SAS creates two types of data sets. temporary and permanent. A temporary SAS data set exists only
for the duration of the current SAS program. Therefore, data stored in temporary SAS data sets
cannot be retrieved for use in later SAS programs, the data set must be recreated each time you run a
new SAS program. A permanent SAS data set exigts after the end of the current program. Y ou do not
need to repeat the DATA step every time you access the datain a SAS program if you save the data
asapermanent SASdataset. A permanent SAS data set is a self-documented file containing the data
AND descriptive information such as variable names and locations, variable labels, and so forth.

There are severa advantages to working with permanent SAS data sets over temporary ones.
1 SAS can read permanent SAS data sets faster than raw files.
I Parmanent SAS data sets are sdlf-documenting.
I Permanent SAS data sets reflect all modifications made to the data.

The mgjor disadvantage of using SAS permanent data setsis that they cannot be read directly by
software other than SAS.

Warning: Because permanent SAS data sets are stored in binary, and different hogts, you can not
directly read a permanent version 6.12 SAS data set from one host that was created on another. (You
will be able to beginning in verson 7, however.) You must first convert the permanent SAS data set on
the originating host to aformat that can be recognized by the receiving hogt.

Data set names of the form CLASS and CLASS2 asin preceding examples, are temporary data sets.
When assigning permanent data sets, you specify atwo-level name such as SAVE.CLASS or
RESEARCH.REPEATED. Thefird part of the nameis caled the libref. A libref isthe name by which
you reference the directory containing the SAS data sets. Actudly, temporary data sets aso have
two-level names. SAS automatically assgns alibref of WORK to temporary data sets. For example,
when you submit DATA STUDY ; SAS creates atemporary data set named WORK.STUDY .
Subsequently, you need use only the one-level data set name when referring to temporary SAS data
sets, because SAS aready assumes the default libref WORK.

When you cregte a permanent SAS data set, you must specify both the libref and the data set name.
Y ou must specify alibref other than WORK because SAS reserves that libref for temporary SAS data
sts. UseaLIBNAME gtatement to assign alibref that tells SAS

72 SAS Workbook for Writing SAS Programs to Process Data on UNIX

where to find the directory that contains or will contain the permanent SAS data sets.

For the SAS data set, SAVE.CLASS, an example LIBNAME statement might be smilar to the one
below:

| i bname save '~/ sasdata';

The keyword LIBNAME isfollowed by the libref (the first-level of the two-level SAS data set name).
The quoted string isthe directory containing the SAS data sets you want to access.

Below isan example that creates a permanent sas data set and placesit in the [.sasdatd] directory:
i bname save ' ~/sasdata’;
data save. cl ass;
infile "class.dat";
i nput name $ 1-7 height 9-12 wei ght 14-18 age 20-21;
ht _cm = hei ght * 2.54;
if age < 12 then agegroup=1;
i f age >= 12 then agegroup=0;
run;

When referring to a permanent SAS data set, use the full two-level name, that is, both the libref and the
data set name. For example, assume you have submitted the SAS code in the example above to create
apermanent SAS data set. In order to obtain aplot of WEIGHT by HEIGHT in alater SAS program,
you could submit the following code:

i bname retrieve '~/sasdata’;

proc plot data=retrieve. class;
pl ot wei ght * height;

run;

Note that a DATA step is not needed here because the data were read into a permanent SAS data

gep in the previous SAS program. It is only necessary to specify aLIBNAME statement and then refer
to the data set in the PROC step.

Storing Permanent SAS Data Sets Efficiently

At some point you may need to think about the storage space your SAS data set occupies. A

SAS Workbook for Writing SAS Programs to Process Data on UNIX 73

permanent SAS data set is Sgnificantly larger than the data in raw form because the file not only
contains the data but also al of its descriptive information. One method of reducing storage
requirements which was discussed earlier in the "Modifying Data using SAS Statements' chapter was
to use aLENGTH statement to store variables as efficiently as possible.

Another method of reducing the storage requirementsis to have SAS compress your SAS data st.
When you have SAS store your data set compressed the observationsin the data set being creeted are
saved as variable-length records rather than the default fixed-length. Compressing a data set reduces
its 9ze by reducing consecutive characters or numbers to 2-byte or 3-byte representations.

The COMPRESS=Y ES data set option species that observationsin the data set being created are to
be compressed, as the following example illustrates:

dat a save. bi gguy (conpress=yes);

Once adata set is compressed, this becomes a permanent attribute of the data set. To uncompress the
observations in the data set, you must use a SAS data step to copy the data set and use
COMPRESS=NO for the new data set:

data save. unconp (COMPRESS=NO) ;
set save. bi gguy;

Another advantage of usng the COMPRESS=Y ES data set option is that fewer input/output
operations are required to read from or write to the data set during processing.

Data can be compressed even further using UNIX's compress facility. As an example of how much
can be saved, the March 1991 CPS file can be compressed from 197,107,884 bytes to 18,203,535
bytes, over 90% reduction! UNIX compression is described in detail in SSCC Publication #7-5,
"Using compressed files".

74 SAS Workbook for Writing SAS Programs to Process Data on UNIX

Exercise 12

1. Write and execute a SAS program that creates a permanent SAS data set from the PROBIT data
of Exercise 10.

2. Writeasecond SAS program that uses the SAS data set you created above and prints out
observationsin the data st.

SAS Workbook for Writing SAS Programs to Process Data on UNIX 75

Using SAS Procedures

Once you have created a SAS data set, SAS can andlyze, process, and display datausing SAS
procedures, or PROC's. SAS procedures are pre-written computer programs that analyze and
process data sets. These procedures read SAS data sets, process the data, and then display results.
PROC gteps dways begin with a PROC statement, which specifies the name of the SAS procedure
you want to run.

To run a SAS procedure, enter the keyword PROC, the name of the procedure, and any optional
gtatement options, followed by aRUN statement. For example, the following statementsinvoke the
PRINT procedure:

proc print;
run;

The above exampleisaproc step in its smplest form. An example of a more complex proc step
follows

proc neans dat a=cl ass;
var hei ght wei ght;
where age >12;
by sex;

run;

This example illustrates four ways you control which variables and observations get processed. Firs,
the DATA=CLASS option on the proc statement is how you select which SAS data set you want
processed. Second, to analyze and process specific variables, use a SAS statement like VAR to list the
variables you want processed. The VAR statement is also used to specify the order in which you want
the variables processed.

Third, the WHERE statement enables you to process selected observations from a data set based on a
specified condition. Hence, the WHERE satement is Similar in action to a subsetting |F statement used
inthe DATA gep. To define a condition, enter the keyword WHERE followed by the conditions the
observations should meet. Combine multiple conditions with SAS operators.

Fourth, the BY statement alows you to process your datain separate, distinct groups. In the above
example, the summary satistics is computed for each sex separately as illusirated below:

76 SAS Workbook for Writing SAS Programs to Process Data on UNIX

Vari abl e N Mean Std Dev M ni mum Maxi mum

HElI GHT 7 61. 1571429 5. 7999589 50. 2000000 66. 5000000

V\EI GHT 6 99. 8333333 11. 5441183 84. 0000000 112. 5000000
.................................... SEXZIM = = = = = e mm e m e e e e e e e e

Vari abl e N Mean Std Dev M ni mum Maxi mum

HElI GHT 6 66. 7500000 3. 5035696 62. 5000000 72. 0000000

V\EI GHT 6 115. 6666667 23. 1466340 84. 0000000 150. 0000000

Before you can useaBY gsatement in a PROC step, you must first sort the data. Sorting data arranges
observationsin order of the values of specified variables. PROC SORT isused to sort datain SAS.
The following example sorts the CLASS data by SEX:

proc sort data=cl ass;
by sex;
run;

Note that if the data were already in sort order by SEX, you would not need to run PROC SORT.

SAS Workbook for Writing SAS Programs to Process Data on UNIX 77

Exercise 13

Obtain means for the variable N of the PROBIT data set used in previous exercises for observations
with dose greater than 10. Then get the mean for the three SYMPTOMS groups separately.

78 SAS Workbook for Writing SAS Programs to Process Data on UNIX

Making Output Informative

Any time you generate output, you can make it more informative by adding titles and labels.

Titles

Y ou can add up to ten titles at the top of your output usng TITLE statementsin your PROC cals. For

example, the following statements produce output with titles on the fird, third, and fourth lines:

proc neans dat a=cl ass;
title ' Height-Wight Study';
title3 'Students Greater than 12 Yrs. Ad';
titled4 '1993 Run';
var hei ght weight;
where age >12;
by sex;
run;

The results are shown below:
Hei ght - Wi ght St udy 4

Students Geater than 12 Yrs. dd

1993 Run
------------------------------------ S
Variable N Mean Std Dev M ni mum Maxi mum
HEGT 7 611571420 57099589 50.2000000 66. 5000000
VEI GHT 6 99. 8333333 11. 5441183 84. 0000000 112. 5000000
------------------------------------ SEXZM === - mmmm e
Variable N Mean Std Dev M ni mum Maxi mum
HEGT 6 667500000 35035696 62.5000000 72. 0000000
VEI GHT 6 115. 6666667 23. 1466340 84. 0000000 150. 0000000

Notethat TITLE and TITLEL are equivaent keywords.

To cance atitle for agpecific line and dl title lines benegth it, enter the keyword TITLE followed by the

SAS Workbook for Writing SAS Programs to Process Data on UNIX

79

gopropriate line number. This satement is often referred to asanull TITLE satement. The following
null TITLE satement cancdstitles on the third line and &fter:

proc neans dat a=cl ass;
title3;
var hei ght wei ght;
where age >12;
by sex;

run;

The results are shown below:

Hei ght - Wi ght St udy 5
.................................... [o V] =AU
Vari abl e N Mean Std Dev M ni mum Maxi mum
HElI GHT 7 61. 1571429 5. 7999589 50. 2000000 66. 5000000
V\EI GHT 6 99. 8333333 11. 5441183 84. 0000000 112. 5000000
.................................... SEXZIM = = = = = o e mmm e m e e e e e e e e
Vari abl e N Mean Std Dev M ni mum Maxi mum
HElI GHT 6 66. 7500000 3. 5035696 62. 5000000 72. 0000000
V\EI GHT 6 115. 6666667 23. 1466340 84. 0000000 150. 0000000

Variable Labels

In procedure output, SAS automaticaly prints the variables with the names you specify. However, you
can label some or dAl of your variables by specifying aLABEL statement ether inthe DATA step or,
with some procedures, in the PROC step. Y our label can be up to 40 characterslong, including
blanks. Suppose you want to describe the variable WEIGHT with the phrase ‘weight in pounds.

Smply specify
| abel weight = 'Weight in Pounds';
The following example labds variables in a PROC step:

proc neans dat a=cl ass;
title 'Height-Wight Study';

80 SAS Workbook for Writing SAS Programs to Process Data on UNIX

title2 'Students Greater than 12 Yrs. O d';
title3 '1993 Run';
var hei ght wei ght;
| abel height= "Height in inches';
| abel weight = 'Wight in Pounds';
where age >12;
run;

The results are shown below:

Hei ght - Wi ght St udy 6
Students Greater than 12 Yrs. dd
1993 Run
Vari abl e Label N Mean Std Dev M ni mum
HElI GHT Height in inches 13 63. 7384615 5. 5096186 50. 2000000

VEI GHT Wi ght in Pounds 12 107. 7500000 19. 2996703 84. 0000000

Vari abl e Label Maxi mum

HEl GHT Hei ght in inches 72. 0000000
VEI GHT Wi ght in Pounds 150. 0000000

If you specify the LABEL statement in the DATA gtep, the labd is permanently stored in the data set.
If you specify the LABEL statement in the PROC step, the labdl is associated with the variable for the
duration of the PROC gtep only. In ether case, when alabd isassigned, it is printed with dmost dl
SAS procedures. The exception isthe PRINT procedure. To use variable labelswith the PRINT
procedure you must specify the LABEL option asfollows:

proc print | abel;
run;

Note that specifying alabel in the PROC step overrides any labds stored in the data .

Value Labels

Labding vauesis not as sraightforward as labeling variables. To labd vaues, use PROC FORMAT
with the VALUE gatement as in the example below:

proc format;
val ue answer 1='never' 2='sonetines' 3="always';

SAS Workbook for Writing SAS Programs to Process Data on UNIX 81

val ue $sexfnt 'F = Female' 'M ="Ml e';

The PROC FORMAT gatement invokes the FORMAT procedure, which createsaformat. The
VALUE gstatement defines the format so the vaues of the variable can be associated with the newly
formatted values. The newly created vaues can be up to 40 characters and must be enclosed in
quotes.

In this example, the first VALUE statement defines aformat named ANSWER. that converts numeric
valuesto character vaues. The second VALUE statement defines aformat named $SEXFMT. that
subdtitutes one character string for another. Note that the $SEXFMT. gartswith a"$" because it isfor
character variables, and that both ranges and labels are enclosed in apostrophes.

After you have created aformat, you can use a FORMAT statement to associate the vaues of the
format with the gppropriate variable. The generd form of the FORMAT datement is as follows:

FORMAT vari ables format. ;

where varigblesis the variable(s) you want value labels for and format is the name of the format you
assigned in the VALUE gtatement of PROC FORMAT. Note that a period (.) must follow the format
name. Below the format $SEXFMT. is gpplied to variable SEX:

proc means dat a=cl ass;
titles;
var hei ght wei ght;
where age >12;
format sex $SEXFMI.
by sex;

run;

The above statements produce the following output:

Hei ght - Wi ght St udy 7
---------------------------------- SEX=Female ------------------"""""- -
Vari abl e N Mean Std Dev M ni mum Maxi mum
HEI GHT 7 61. 1571429 5. 7999589 50. 2000000 66. 5000000
VEI GHT 6 99. 8333333 11. 5441183 84. 0000000 112. 5000000
----------------------------------- SEX=Mal @ ----------- e
Vari abl e N Mean Std Dev M ni mum Maxi mum

82 SAS Workbook for Writing SAS Programs to Process Data on UNIX

62. 5000000
84. 0000000

HEI GHT 6 66. 7500000 3. 5035696
VEEI GHT 6 115.6666667 23. 1466340

72. 0000000
150. 0000000

Note that formats assgned in PROC steps as above only remain in effect for that PROC call. Formats
assigned in aDATA step, however, remain in effect for the entire SAS program.

Y ou can dso use PROC FORMAT to recode numeric values into categories.

proc formt;
val ue agef 10-12='youngest'
15- 16=" ol dest ' ;
run;
proc means;
format age agef.;
cl ass age;
var hei ght wei ght;
run;

The above code produces the following output:

13-14="m ddl e’

. 0620192
. 4358293

. 8230913
. 6804227

. 3800888

. 3000000
. 5000000

. 2000000
. 0000000

. 5000000

AGE N Cbs \Variable N Mean
youngest 7 HElGAT 7 58. 0000000
VEI GHT 7 86. 7857143

m ddl e 8 HEI GAT 8 61. 7625000
VEI GHT 7 96. 2142857

ol dest 5 HEl GAT 5 66. 9000000
VEI GHT 5 123. 9000000

. 1551741

. 0000000

SAS Workbook for Writing SAS Programs to Process Data on UNIX

83

Exercise 14

Use PROC FORMAT to cregte vaue labels for each of the DOSE levels. Then use PROC PRINT to
display the data set. Enhance your output with titles and variable |abels.

84 SAS Workbook for Writing SAS Programs to Process Data on UNIX

SAS Procedures for Verifying your SAS Data Set

In the chapter, "Running your SAS Program’, you examined methods for verifying SAS data sets
utilizing error messages SAS prints out when it detects errorsin the data. Unfortunately, though there
are many other kinds of data errors that you can only uncover by examining your data. In this chapter,
you will learn how to examine your datawith the PRINT, PLOT, CONTENTS, and FREQ
procedures. Other SAS procedures useful for examining data but which are not discussed in this
section include MEANS, SUMMARY, UNIVARIATE, COMPARE, and INSIGHT.

The PRINT Procedure

PROC PRINT alows you to examine the actual data values in adata set in order to verify that the data
were entered correctly. For example, the following statements cause SAS to display dl the
observationsin the CLASS data et:

proc print data=cl ass; run;

PROC PRINT, in combination with the VAR, WHERE, TITLE, and BY statements described above,
alow you to enhance your printed output. Often times though your data set istoo large to display inits
entirety. What is often done in this case is to request SAS to display the first few observationsin the
data set by specifying the data set option OBS= on the PROC PRINT statement asillustrated below:

proc print data=class(obs=5); run;

The above statement produces the following output:

Hei ght - Wi ght St udy 8
oBS NAVE HEl GHT VEI GHT ACGE SEX
1 Alice 56.5 84.0 13 F
2 Bar bar a 65. 3 98.0 13 F
3 Car ol 62.8 102.5 14 F
4 Jane 59. 8 84.5 12 F
5 Janet 62.5 112.5 15 F

The CONTENTS Procedure

PROC CONTENTS gives you another way to look at a SAS data set. Useit to display information
that describes the structure of a SAS data set rather than the data vaues:

SAS Workbook for Writing SAS Programs to Process Data on UNIX 85

PROC CONTENTS DATA=CLASS; RUN;

The above statement produces the following output:

CONTENTS PROCEDURE

Data Set Name: WORK. ONE Gbservati ons: 20
Menber Type: DATA Vari abl es: 4
Engi ne: V607 | ndexes: 0
Creat ed: 9: 30 Wednesday, March 10, 1993 Gbservation Length: 32
Last Modified: 9:30 Wdnesday, March 10, 1993 Del et ed Chservations: 0
Protecti on: Conpr essed: NO
Data Set Type: Sort ed: NO
----- Engi ne/ Host Dependent | nfornation-----

Max Cbs per Page: 254

Cbs in First Data Page: 20

Fi | enane: $13DI A13: [SCRATCH. SAS$WORK23000E84] ONE. SASEB$DATA
Di sk Bl ocks Al |l ocat ed: 20

----- Al phabetic List of Variables and Attributes-----
Vari abl e Type Len Pos

4 AGE Num 8 24
2 HEl GHT Num 8 8
1 NAME Char 8 0
3 VEIGHT Num 8 16
PROC CONTENTS reports:

1 the number of variables and observations

the name, type, and length of each variable

the pogtion of the variable in the observation

the format and label for each varidble, if they exist

certain operating system-specific detalls.

Plotting Data using the PLOT Procedure

86 SAS Workbook for Writing SAS Programs to Process Data on UNIX

Plotting data enables you to graphically illugtrate the relationship between variables. To produce a
sample plot of one set of variables, enter a PROC PLOT statement followed by a PLOT statement.
The PROC PLOT gtatements instructs SAS which data set to use and the PLOT statement specifies
the variables you want plotted. For example:

PROC PLOT DATA=CLASS;
PLOT WEI GHT* HEI GHT,
RUN;

Note that the two variables you want plotted are joined by an asterisk (*) with the variable you want
plotted on the vertical axis appearing to the | eft of the agterisk and the variable you want plotted on the
horizontal axis appearing to the right of the agterisk.

The above SAS statements produce the following outpuit:

Hei ght - Wi ght St udy 11
Pl ot of WEI GHT*HEI GHT. Legend: A = 1 obs, B = 2 obs, etc.

150 + A
[
[
| A

VEEI GHT | A

[
[
| A B A
[

100 + A AA A
[
| A
| A B A A
| A
[
[
[
[

50 + A
ce e e e e e +- -
50 55 60 65 70 75

Notice that PROC PLOT automaticaly sdects the plotting symbol A to represent one occurrence at
each point. If two occurrences coincide a a point, the plotting symbol B is used; and so forth. PROC
PLOT aso sdectsranges for both axes, placestick marks at reasonably spaced intervas, and prints a
legend that names the variables and explains the plotting symbols.

SAS Workbook for Writing SAS Programs to Process Data on UNIX 87

Although PROC PLOT determines many plot characteritics by default, you can override these defaults
and specify selections of your own. For example, to specify plotting symbols of your choice replace the
above PLOT datement with the following:

PLOT WEI GHT* HEI GHT=" *" ;

When you specify a plotting symbol, PROC PLOT uses that symbol for al points on the plot regardless
of how many points coincide. If points coincide, a message appears a the bottom of the plot telling you
how many observations are hidden.

There are many other ways to customize your plots with PROC PLOT. Refer to "The SAS Procedures
Guide" for details.

Generating Frequency and Cross tabulation Tables
using PROC FREQ

PROC FREQ produces frequency tables and Cross tabulation tables which illugtrate the frequency a
which individua vaues or combinations of vaues occur within a SAS data set.

Frequency tables summarize data by displaying the frequency count, or how often the value of a
variable occursin a SAS data set. These tables aso display the percent, cumulative frequency, and
cumulative percent of each datavaue. The following example produces a frequency table:

PROC FREQ DATA=CLASS;
TABLES AGE;
RUN;

The above statements produce the following output:
Hei ght - Wi ght St udy 12

Curmul ative Cumnul ative

AGE Frequency Per cent Fr equency Per cent
11 2 10.0 2 10.0
12 5 25.0 7 35.0
13 4 20.0 11 55.0
14 4 20.0 15 75.0
15 4 20.0 19 95.0

88 SAS Workbook for Writing SAS Programs to Process Data on UNIX

16 1 5.0 20 100.0

The TABLES statement aso dlows you to specify options that suppress specific categories of output.
NOCUM suppresses the cumulative statistics and NOPERCENT suppresses the display of the percent
column. To use ether of these options enter a dash (/) after the last variable on the table statement
followed by the options asin the following example:

PROC FREQ DATA=CLASS;
TABLES AGE VEI GHT / NOCUM NOPERCENT,;
RUN;

Y ou can describe data further with a Cross tabulation table. A Cross tabulation table is a frequency
table that displays the frequency digtribution for two or more variables.

To produce a Cross tabulation table, enter a TABLES statement containing the keyword TABLES,
followed by the name of the variables you want to process, separated by an asterisk (*). The values of
the firgt variable listed form the rows of the table; the second variable form the columns. For example:

PROC FREQ
TABLES SEX* AGE;
RUN;

The above statements produce the following output:

Hei ght - Wi ght St udy 13

TABLE OF SEX BY ACE

SEX AGE

Frequency|

Percent |

Row Pct

Col Pct | 11] 12| 13| 14| 15| 16| Total

--------- T T

F | 1| 2| 3| 2| 2| 0| 10
| 5.00 | 10.00 | 15.00 | 10.00 | 10.00 | 0.00 | 50.00
| 10.00 | 20.00 | 30.00| 20.00 | 20.00 | 0. 00
| 50.00| 40.00| 75.00| 50.00 | 50.00 | 0. 00

--------- T T

M | 1| 3| 1| 2| 2| 1] 10
| 5.00 | 15.00 | 5.00 | 10.00 | 10.00 | 5.00 | 50.00
| 10.00 | 30.00 | 10.00 | 20.00 | 20.00 | 10.00
| 50.00| 60.00| 25.00| 50.00| 50.00 | 100.00

--------- T T

SAS Workbook for Writing SAS Programs to Process Data on UNIX 89

Tot al 2 5 4 4 4 1 20
10. 00 25.00 20. 00 20. 00 20. 00 5.00 100.00

The above output is a default Cross tabulation table containing frequency, percent, row percent, and
column percent statistics. The table consists of blocks of data, lso known as cells, where the rows and
columnsintersect. Each cell containsthe four satigtics listed above. Y ou can aso request other
datistics by adding options to the TABLES statement in the manner described above. For example:

PROC FREQ
TABLES SEX*AGE / CHI SQ CELLCHI 2;
RUN,;

CHISQ performs chi-square tests of homogeneity or independence, and computes measures of
association based on chi-square. CELLCHI2 prints each cdll's contribution to the total chi-square
satigtic.

The above statements produce the following output:

Hei ght - Wi ght St udy 15

TABLE OF SEX BY AGE

SEX AGE
Frequency |
Cel | Chi - Squar e|
Per cent |
Row Pct |
Col Pct | 14| 15| 16| Total
--------------- T T T
F | 2| 2| 0| 10
| 0| 0 | 0.5
| 10.00 | 10.00 | 0.00 | 50.00
| 20.00 | 20.00 | 0.00
| 50.00 | 50.00 | 0.00
--------------- T T T
M | 2| 2| 1| 10
| 0| 0 | 0.5
| 10.00 | 10.00 | 5.00 | 50.00
| 20.00| 20.00 | 10.00
| 50.00 | 50.00 | 100.00
--------------- T T T
Tot al 4 4 1 20
20. 00 20. 00 5.00 100.00

90 SAS Workbook for Writing SAS Programs to Process Data on UNIX

Hei ght - Wi ght St udy 16
16: 17 Wednesday, March 3, 1993

STATI STI CS FOR TABLE OF SEX BY ACE

Statistic DF Val ue Prob
Chi - Squar e 5 2. 200 0. 821
Li kel i hood Rati o Chi-Square 5 2.634 0. 756
Mant el - Haenszel Chi - Square 1 0. 095 0. 758
Phi Coeffi ci ent 0. 332
Conti ngency Coefficient 0. 315
Cramer's V 0. 332

Sanmpl e Size = 20
WARNI NG 100% of the cells have expected counts |ess
than 5. Chi-Square may not be a valid test.

SAS dso enables you to creste n-way tables by connecting dl the variable namesin the TABLES
datement with agterisks. Vaues of the last variable form the columns of the table; vaues of the
next-to-lagt variable form the rows. Each level (or combination of levels) of other variables form one
stratum, and a separate contingency table is produced for each stratum. For example, the following
gtatements produce two tables, one for males and one for femaes:

PROC FREQ
TABLES SEX* W\EI GHT* AGE;
RUN;

Multi-way tables can generate alot of printed output. For example, if the variables A, B, C, D, and E
each have ten leves, five-way tables of A*B*C*D* E could generate 4000 or more pages of output.

SAS Workbook for Writing SAS Programs to Process Data on UNIX 91

Exercise 15

1. Cresate a2-way frequency table using the PROBIT data. Make PREP the rows and DOSE the
columns. Reguest chi-sguare statistics.

2. Create a 3-way table adding SY MPTOMS as the stratum variable.

92 SAS Workbook for Writing SAS Programs to Process Data on UNIX

References

SAS Language and Procedures: Introduction, Verson 6

SAS Language and Procedures. Usage, Verson 6

SAS Language and Procedures: Usage 2, Version 6

SAS Companion for the UNIX Environment and Derivatives, Verson 6
SSCC has acomplete set of SAS documentation. These documents are circulated by the CDE
Print/Virtud Library in 4457 Socid Science. There are dso numerous handouts written by SSCC staff
that you may find useful. Theseindude

Research Computing on SSCC UNIX Systems

Using SASon UNIX (SSCC Pub. 7-4)

Using SASto Perform a Table Lookup (SSCC Pub. 4-1)

Constructing Indicator Variables with SAS (SSCC Pub. 4-2)

SAS Programming Efficiencies (SSCC Pub. 4-3)

Converting a Code Book to a SASFORMAT Library (SSCC Pub 4-4)

Using SASto Reformat Data Records from One to Several (SSCC Pub 4-5)

How to Write/Read UNIX Compressed SAS Data Sets Directly (#1)

How to Write a Macro to Transport SAS Data Sets from VMSto UNIX (#7)

How to Transport SAS Data Sets from VMSto UNIX (#17)

How to Transfer SAS Data Sets from VMSto UNIX using SAS Version 7 (#22)

How to Transfer SAS and SPSS system files between 3480 and disk (#23)

SAS Workbook for Writing SAS Programs to Process Data on UNIX 93

How to Print SASGRAPH Output (#26)

How to Read Compressed SAS Transport files Directly in your SAS Program (#28)

How to Avoid Running out of Disk Space when using Statistical Software on UNIX (#30)
How to Convert an SPSS Save Fileinto a SAS Data Set (#38)

How to Transport SAS Data Sets between a PC and SSCC Computers (#42)

SSCC Publications are available from the Consultant, either Public Termind Room (Socid Science
2470 and 7413), or online a SSCC’ s web pages. http//www.ssc.wisc.edu/.

94

SAS Workbook for Writing SAS Programs to Process Data on UNIX

SAS Workbook for Writing SAS Programs to Process Data on UNIX 95

Solutions to Exercises

Exercise 1:

1 proc gl m dat a=wgt | oss;
cl ass sex age;
nodel wgt = sex age;
run;

2. Census90
CEN_90

Exercise 3:
i nput drug $ answer $ wkl-wk4;

i nput drug $ 1-8 answer $ 10 wkl 13-15 wk2 17-20
wk3 22-25 wk4 27-30;

Exercise 4:

i nput drug $ 1-10 answer $ 11 wkl-wk4;

Exercise5:

DATA PROBI T,

| NPUT dose 11-12 @

i f dose < 40;

| NPUT prep $ dose synptons $ n;
CARDS;

Exercise 6:

DATA HOUSE;
I NFILE 'mul tiple.dat';

96 SAS Workbook for Writing SAS Programs to Process Data on UNIX

| NPUT HHTYPE HHSI ZE REGI ON
#2 KI DSLT6 WEEKSLY:;
Exercise 7:

DATA PROBI T,
| ength prep $ 5 dose n 2 synptons $ 6;
| NPUT prep $ dose synptonms $ n;
| dose = LOGl10(dose);
newdose=dose/ 10;

CARDS;
Exercise 8:
DATA PROBI T;
| NPUT prep $ dose synptonms $ n;
I f synmptoms = "None" then duml=1; else duml=0;

else if synptoms = "M Id" then dunk=1; el se dun=0;
CARDS;

Exercise 9:

dat a unenpl oy;
I nput id yr85-yr92;
array years {8} yr85-yr92;
do i=11to 8;
If id <6 then years{i} = years{i} * 2;
else if id >5 then years{i} = years{i} [/ 2;
end;

Exercise 10:

data probit2 (drop=prep);

set probit;
if dose < 40;
run;
Exercise 11;

SAS Workbook for Writing SAS Programs to Process Data on UNIX

97

data stand test;
set probit;
if prep = '"stand' then output stand;
else if prep = "test' then output test;
run;
Exercise 12:

i bname save ' ~/sasstuff’';
DATA SAVE. PROBI T;
| NPUT prep $ dose synptonms $ n;
i f dose It 40;
| dose = LOGLO(dose);
if prep = "test' then prepdose = | dose;
el se prepdose = O;
CARDS;

i bname retrieve '~/sasstuff’;
proc print data=retrieve.probit; run;

Exercise 13;

proc neans dat a=probit;
where dose > 10;
var n;

run;

proc sort data=probit;
by synptons;

run;

proc neans dat a=probit;
where dose >10;
var n;
by synptons;

run;

Exercise 14:

proc format;
val ue dosefm 10="1ow 20='ned' 30='high' 40="very
hi gh' ;

98 SAS Workbook for Writing SAS Programs to Process Data on UNIX

run,

proc print data=probit;
format dose dosefnt.;
| abel n "total";
title "data for probit analysis';

run;
Exercise 15:
1.
proc freq data=probit;
t abl es prep*dose / chisq;
run;
2.

proc freq data=probit;
tabl es synptons*prep*dose;
run;

SAS Workbook for Writing SAS Programs to Process Data on UNIX 99

