Homework 6

1. Suppose r_{P} is the return on a portfolio of risky assets. The portfolio consists of two assets that pay return r_{1} and r_{2} respectively. The expected returns on the two assets are m_{1} and m_{2} (that is, $m_{1} \equiv E\left(r_{1}\right)$ and $m_{2} \equiv E\left(r_{2}\right)$.) The share of the portfolio in asset 1 is a, and the share in asset 2 is $1-a$. So

$$
r_{p}=a r_{1}+(1-a) r_{2} .
$$

Let v_{1} be the variance of the return on asset 1 and v_{2} be the variance of the return on asset 2 . Let c_{12} be their covariance. (That is, $v_{1}=\operatorname{var}\left(r_{1}\right), v_{2}=\operatorname{var}\left(r_{2}\right)$, and $c_{12}=\operatorname{cov}\left(r_{1}, r_{2}\right)$.)

We know from the properties of expectations and variances that:

$$
\begin{aligned}
& E\left(r_{p}\right)=a m_{1}+(1-a) m_{2} \\
& \operatorname{var}\left(r_{P}\right)=a^{2} v_{1}+(1-a)^{2} v_{2}+2 a(1-a) c_{12}
\end{aligned}
$$

a. Find the value of a that maximizes $\frac{\left(E\left(r_{P}\right)\right)^{2}}{\operatorname{var}\left(r_{P}\right)}$. Your answer should express a in terms of m_{1} and m_{2}, and v_{1}, v_{2}, and c_{12}. Please try to simplify your answers (making cancellations) as much as possible.
b. For simplicity, now assume $m \equiv m_{1}=m_{2}$ and $c_{12}=0$. Write out the solution for a in this special case.
c. Continue to assume $m \equiv m_{1}=m_{2}$ and $c_{12}=0$. Now, let's interpret the problem in the following way. We are looking at the risky portfolio of a home investor. Asset 1 is the foreign bond that pays $i^{*}+s_{+1}-s$ and asset 2 is an equity that pays r_{x}. Here, s is the log of the exchange rate, and we are writing the approximate return on the foreign investment. At the time the portfolio choice is made, i^{*} and s are known, but the random variables are s_{+1} and r_{x}. The moments of these random variables are $E\left(s_{+1}\right), E\left(r_{x}\right), \operatorname{var}\left(s_{+1}\right), \operatorname{var}\left(r_{x}\right), \operatorname{cov}\left(s_{+1}, r_{x}\right)$. Write your solution to part b , now using the specific interpretation given here.
d. Now, use the general formula derived in part a. That is, do not assume $m \equiv m_{1}=m_{2}$ and $c_{12}=0$. Write that formula using the specific assumptions about what the risky asset are from part c . What variables determine the investors demand for foreign bonds?

