Homework 6

Suppose r_p is the return on a portfolio of risky assets. The portfolio consists of two assets that pay return r_1 and r_2 respectively. The expected returns on the two assets are m_1 and m_2 (that is, $m_1 \equiv E(r_1)$ and $m_2 \equiv E(r_2)$.) The share of the portfolio in asset 1 is a, and the share in asset 2 is 1-a. So

$$r_p = ar_1 + (1-a)r_2$$
.

Let v_1 be the variance of the return on asset 1 and v_2 be the variance of the return on asset 2. Let c_{12} be their covariance. (That is, $v_1 = \text{var}(r_1)$, $v_2 = \text{var}(r_2)$, and $c_{12} = \text{cov}(r_1, r_2)$.)

We know from the properties of expectations and variances that:

$$E(r_p) = am_1 + (1-a)m_2$$

$$\operatorname{var}(r_P) = a^2 v_1 + (1-a)^2 v_2 + 2a(1-a)c_{12}$$

- a. Find the value of a that maximizes $\frac{\left(E(r_p)\right)^2}{\operatorname{var}(r_p)}$. Your answer should express a in terms of m_1 and m_2 , and v_1 , v_2 , and v_1 . Please try to simplify your answers (making cancellations) as much as possible.
- b. For simplicity, now assume $m \equiv m_1 = m_2$ and $c_{12} = 0$. Write out the solution for a in this special case.
- Continue to assume $m \equiv m_1 = m_2$ and $c_{12} = 0$. Now, let's interpret the problem in the following way. We are looking at the risky portfolio of a home investor. Asset 1 is the foreign bond that pays $i^* + s_{+1} s$ and asset 2 is an equity that pays r_x . Here, s is the log of the exchange rate, and we are writing the approximate return on the foreign investment. At the time the portfolio choice is made, i^* and s are known, but the random variables are s_{+1} and s and s are known, but the random variables are s_{+1} and s are known, but the random variables are s and s are known and s are known at s

d. Now, use the general formula derived in part a. That is, do not assume $m \equiv m_1 = m_2$ and $c_{12} = 0$. Write that formula using the specific assumptions about what the risky asset are from part c. What variables determine the investors demand for foreign bonds?