Chapter 20

Foreign Currency Futures and Options
20.1 The Basics of Futures Contracts

• Futures (versus forwards)
 • Allow individuals and firms to buy and sell specific amounts of foreign currency at an agreed-upon price determined on a given future day
 • Traded on an exchange (e.g., CME Group, NYSE Euronex’s LIFFE CONNECT, and Tokyo Financial Exchange)
 • Standardized, smaller amounts (e.g., ¥12.5M, €125,000, C$100,000)
 • Fixed maturity dates
• Credit risk
 • Futures brokerage firms register with the Commodity futures trading commission (CFTC) as a futures commission merchant (FCM)
 • Clearing member / clearinghouse
20.1 The Basics of Futures Contracts

- **Margins**
 - Credit risk is handled by setting up an account called a margin account, wherein they deposit an asset as collateral
 - The first asset is called the initial margin
 - Asset can be cash, US government obligations, securities listed on NYSE and American Stock Exchange, gold warehouse receipts or letters of credit
 - Depends on size of contract and variability of currency involved
 - Margin call – when the value of the margin account reaches the maintenance margin, the account must be brought back up to its initial value

- **Marking to market – deposit of daily losses/profits**
 - Maintenance margins
 - Minimum amount that must be kept in the account to guard against severe fluctuations in the futures prices (for CME, about $1,500 for USD/GBP and $4,500 for JPY/USD)
Exhibit 20.1 An Example of Marking to Market in the Futures Market

- Euro contract (€125,000)
 - On September 16, you “go long in December Euro”
 - In other words, you buy a Euro contract that is deliverable in December
 - Maintenance margin: $1500

<table>
<thead>
<tr>
<th>Day</th>
<th>Futures price ($/€)</th>
<th>Change in futures price ($/€)</th>
<th>Gain or loss</th>
<th>Cumulative gain or loss</th>
<th>Margin account</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>1.3321</td>
<td>0</td>
<td>0</td>
<td>−$75.00</td>
<td>$2,000.00</td>
</tr>
<tr>
<td>$t+1$</td>
<td>1.3315</td>
<td>−$0.0006</td>
<td>−$75.00</td>
<td>−$75.00</td>
<td>$1,925.00</td>
</tr>
<tr>
<td>$t+2$</td>
<td>1.3304</td>
<td>−$0.0011</td>
<td>−$137.50</td>
<td>−$212.50</td>
<td>$1,787.50</td>
</tr>
<tr>
<td>$t+3$</td>
<td>1.3288</td>
<td>−$0.0016</td>
<td>−$200.00</td>
<td>−$412.50</td>
<td>$1,587.50</td>
</tr>
<tr>
<td>$t+4$</td>
<td>1.3264</td>
<td>−$0.0024</td>
<td>−$300.00</td>
<td>−$712.50</td>
<td>$2,000.00</td>
</tr>
<tr>
<td>$t+5$</td>
<td>1.3296</td>
<td>+$0.0032</td>
<td>+$400.00</td>
<td>−$312.50</td>
<td>$2,400.00</td>
</tr>
<tr>
<td>$t+1$</td>
<td>1.3301</td>
<td>+$0.0005</td>
<td>+$62.50</td>
<td>−$250.00</td>
<td>$2,462.50</td>
</tr>
</tbody>
</table>

Initial Margin – for both buyer and seller

Settle Price

Contract Size $\times \Delta F$

Margin call

Exhibit 20.1 An example of marking to market in the futures market
20.1 The Basics of Futures Contracts

• The pricing of futures contracts
 • The payoff on a forward contract:
 • $S(T) - F(t)$
 • where $S(T)$ is the future spot rate at maturity time T and $F(t)$ is the forward price at time t
 • The payoff on a futures contract
 • $f(T) - f(t)$
 • Where $f(T)$ is the futures price at maturity time T and $f(t)$ is the futures price at time t
 • Payoffs for futures can differ than those from forwards because the interest that is earned on future profits or that must be paid on future losses in a futures contract
Exhibit 20.2 Futures Quotes from August 5, 2015

<table>
<thead>
<tr>
<th>Contract size</th>
<th>JPY12,500,000</th>
<th>CAD100,000</th>
<th>GBP62,500</th>
<th>EUR125,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exchange rate</td>
<td>USD per 100 JPY</td>
<td>USD per CAD</td>
<td>USD per GBP</td>
<td>USD per EUR</td>
</tr>
<tr>
<td>Maturity</td>
<td>SEP</td>
<td>DEC</td>
<td>MAR</td>
<td>SEP</td>
</tr>
<tr>
<td>Open price</td>
<td>0.80435</td>
<td>0.80580</td>
<td>0.80475</td>
<td>0.7581</td>
</tr>
<tr>
<td>High price</td>
<td>0.80665</td>
<td>0.80780</td>
<td>0.80870</td>
<td>0.7625</td>
</tr>
<tr>
<td>Low price</td>
<td>0.80015</td>
<td>0.80015</td>
<td>0.80045</td>
<td>0.7556</td>
</tr>
<tr>
<td>Settle price</td>
<td>0.80100</td>
<td>0.80230</td>
<td>0.80470</td>
<td>0.758</td>
</tr>
<tr>
<td>Change in price</td>
<td>-0.00350</td>
<td>-0.00350</td>
<td>-0.00345</td>
<td>-0.0002</td>
</tr>
<tr>
<td>Open interest</td>
<td>250,419</td>
<td>2,038</td>
<td>92</td>
<td>163,438</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contract size</th>
<th>CHF125,00</th>
<th>AUD100,00</th>
<th>MXN500,000</th>
<th>EUR100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exchange rate</td>
<td>USD per CHF</td>
<td>USD per AUD</td>
<td>USD per 100,000 MXN</td>
<td>JPY per EUR</td>
</tr>
<tr>
<td>Maturity</td>
<td>SEP</td>
<td>DEC</td>
<td>MAR</td>
<td>SEP</td>
</tr>
<tr>
<td>Open price</td>
<td>1.0237</td>
<td>1.0262</td>
<td>1.0297</td>
<td>0.7366</td>
</tr>
<tr>
<td>High price</td>
<td>1.0259</td>
<td>1.0290</td>
<td>1.0314</td>
<td>0.7389</td>
</tr>
<tr>
<td>Low price</td>
<td>1.0193</td>
<td>1.0231</td>
<td>1.0294</td>
<td>0.7318</td>
</tr>
<tr>
<td>Settle price</td>
<td>1.0219</td>
<td>1.0254</td>
<td>1.0295</td>
<td>0.7331</td>
</tr>
<tr>
<td>Change in price</td>
<td>-0.0010</td>
<td>-0.0010</td>
<td>-0.0011</td>
<td>-0.0037</td>
</tr>
<tr>
<td>Open interest</td>
<td>36,944</td>
<td>431</td>
<td>19</td>
<td>167,683</td>
</tr>
</tbody>
</table>
20.2 Hedging Transaction Risk with Futures

• It is mid-February and Nancy Foods expects a receivable of €250,000 in one month
 • Will need 2 contracts (since contracts are €125,000)
 • Wants to receive $ when the € weakens to protect against a loss in receivable
 • Thereby selling €
 • If contract delivery date coincides with receivable date, maturity is matched perfectly
• Example:
 • February: Spot ($1.24/€); Future ($1.23/€)
 • March: Spot ($1.35/€); Future ($1.35/€); 30-day i(€) = 3% p.a.
 • Receivable in 30 days
20.2 Hedging Transaction Risk with Futures

- Value upon receipt of money (mid-March)
 - Sell receivable in spot market in March
 - $250,000 × $1.35/€ = $337,500
 - Loss on futures contract
 - \[([\$1.23/€] - [\$1.35/€]) \times €250,000 = -\$30,000 \]
- Combination of CFs
 - $337,500 − $30,000 = $307,500
- Effective exchange rate
 - \(\frac{\$307,500}{€250,000} = $1.23/€ \)
20.2 Hedging Transaction Risk with Futures

• Potential problems with a futures hedge
 • What if you need to hedge an odd amount?
 • What if the contract delivery date does not match your receivable/payable date?
20.3 Basics of Foreign Currency Option Contracts

• Gives the buyer the right but not the obligation to buy (call) or sell (put) a specific amount of foreign currency for domestic currency at a specific forex rate
 • Price is called the premium
 • Traded by money center banks and exchanges (e.g., NASDAQ, OMX, PHLX)
 • European vs. American options:
 • European options can only be exercised on maturity date; Americans can be exercised anytime (i.e., “early exercise” is permitted)
• Strike / exercise price (“K”) – forex rate in the contract
• Intrinsic value – revenue from exercising an option
 • In the money / out of the money / at-the-money
 • Call option: \(\max[S - K, 0] \)
 • Put option: \(\max[K - S, 0] \)
20.3 Basics of Foreign Currency Option Contracts

Example: A Euro Call Option Against Dollars

• A particular euro call option offers the buyer the right (but not the obligation) to purchase €1M @ $1.20/€
 • If the price of the € > K, owner will exercise the option at expiration date
 • To exercise: the buyer pays ($1.20/€) × €1M = $1.2M to the seller and the seller delivers the €1M
 • The buyer can then turn around and sell the € on the spot market at a higher price!
 • For example, if the spot is $1.25/€, the revenue is:
 • [($1.25/€) − ($1.20/€)] × €1M = $50,000
 • This is the intrinsic value of the option, not the profit
 • Buyer could therefore simply accept $50,000 from the seller if both parties prefer to do so
20.3 Basics of Foreign Currency Option Contracts

Example: A Yen Put Option Against the Pound

• A particular yen put option offers the buyer the right (but not the obligation) to sell ¥100M @ £0.6494/¥100
 • If the price of the ¥100 < K, owner will exercise
 • To exercise: the buyer delivers ¥100M to the seller
 • The seller must pay (£0.6494/¥100) × ¥100M = £649,400
 • For example, say the spot at exercise is £0.6000/¥100
 • The revenue then is:
 • [(£0.6494/¥100) − (£0.6000/¥100)] × ¥100M = £49,400
 • Intrinsic value of option, not the profit
 • Buyer could therefore accept £49,400 from seller if both of the parties prefer to do so
20.3 Basics of Foreign Currency Option Contracts

• Options trading
 • Mostly traded by banks in the interbank market or the OTC market
 • Typically European convention in OTC market
 • CFs either exchanged or cash settlement
 • Considerable counterparty risk, managed by exposure limits
 • Currency options on the NASDAQ OMX PHLX
 • Mostly options on spot currencies vs U.S. Dollar
 • Expiration months:
 • March, June, September and December
 • Two nearest future months
 • Last trading day is the third Friday of expiring month
 • European-exercise type but settlement is in dollars
 • Options Clearing Corporation serves as clearinghouse
Exhibit 20.4 Prices of options on futures contracts

<table>
<thead>
<tr>
<th>Currency</th>
<th>Type</th>
<th>Maturity</th>
<th>7500</th>
<th>7550</th>
<th>7600</th>
<th>7650</th>
<th>7700</th>
<th>7750</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canadian dollar</td>
<td>Calls</td>
<td>Sep</td>
<td>1.57</td>
<td>1.22</td>
<td>0.92</td>
<td>0.67</td>
<td>0.47</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec</td>
<td>2.36</td>
<td>2.05</td>
<td>1.77</td>
<td>1.52</td>
<td>1.28</td>
<td>1.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mar</td>
<td>2.83</td>
<td>2.54</td>
<td>2.26</td>
<td>2.00</td>
<td>1.77</td>
<td>1.55</td>
</tr>
<tr>
<td></td>
<td>Puts</td>
<td>Sep</td>
<td>0.37</td>
<td>0.52</td>
<td>0.72</td>
<td>0.97</td>
<td>1.27</td>
<td>1.62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec</td>
<td>1.18</td>
<td>1.38</td>
<td>1.59</td>
<td>1.84</td>
<td>2.10</td>
<td>2.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mar</td>
<td>1.65</td>
<td>1.85</td>
<td>2.07</td>
<td>2.31</td>
<td>2.58</td>
<td>2.86</td>
</tr>
<tr>
<td>USD cents per CAD</td>
<td></td>
<td></td>
<td>1010</td>
<td>1015</td>
<td>1020</td>
<td>1025</td>
<td>1030</td>
<td>1035</td>
</tr>
<tr>
<td>Swiss franc</td>
<td>Calls</td>
<td>Sep</td>
<td>1.87</td>
<td>1.56</td>
<td>1.28</td>
<td>1.03</td>
<td>0.83</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec</td>
<td>3.01</td>
<td>2.73</td>
<td>2.48</td>
<td>2.24</td>
<td>2.02</td>
<td>1.81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mar</td>
<td>3.99</td>
<td>3.7</td>
<td>3.43</td>
<td>3.17</td>
<td>2.92</td>
<td>2.69</td>
</tr>
<tr>
<td>CHF125,000</td>
<td>Puts</td>
<td>Sep</td>
<td>0.68</td>
<td>0.87</td>
<td>1.09</td>
<td>1.34</td>
<td>1.64</td>
<td>1.96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec</td>
<td>1.85</td>
<td>2.07</td>
<td>2.32</td>
<td>2.58</td>
<td>2.85</td>
<td>3.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mar</td>
<td>2.42</td>
<td>2.63</td>
<td>2.85</td>
<td>3.09</td>
<td>3.34</td>
<td>3.61</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1080</td>
<td>1085</td>
<td>1090</td>
<td>1450</td>
<td>1460</td>
<td>1470</td>
</tr>
<tr>
<td>EUR125,000</td>
<td>Calls</td>
<td>Sep</td>
<td>1.96</td>
<td>1.66</td>
<td>1.39</td>
<td>1.15</td>
<td>0.94</td>
<td>0.76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec</td>
<td>3.70</td>
<td>3.39</td>
<td>3.08</td>
<td>2.81</td>
<td>2.54</td>
<td>2.29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mar</td>
<td>4.24</td>
<td>3.95</td>
<td>3.68</td>
<td>3.41</td>
<td>3.16</td>
<td>2.92</td>
</tr>
<tr>
<td>USD cents per EUR</td>
<td></td>
<td></td>
<td>1545</td>
<td>1550</td>
<td>1555</td>
<td>1560</td>
<td>1565</td>
<td>1570</td>
</tr>
<tr>
<td>British pound</td>
<td>Calls</td>
<td>Sep</td>
<td>2.27</td>
<td>1.94</td>
<td>1.65</td>
<td>1.38</td>
<td>1.15</td>
<td>0.94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec</td>
<td>3.59</td>
<td>3.30</td>
<td>3.02</td>
<td>2.76</td>
<td>2.51</td>
<td>2.28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mar</td>
<td>4.50</td>
<td>4.21</td>
<td>3.93</td>
<td>3.66</td>
<td>3.40</td>
<td>3.16</td>
</tr>
<tr>
<td>GBP62,500</td>
<td>Puts</td>
<td>Sep</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
<td>0.02</td>
<td>0.13</td>
<td>1.45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec</td>
<td>0.01</td>
<td>0.01</td>
<td>0.04</td>
<td>0.13</td>
<td>0.53</td>
<td>2.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mar</td>
<td>0.16</td>
<td>0.33</td>
<td>0.64</td>
<td>1.22</td>
<td>2.33</td>
<td>4.32</td>
</tr>
<tr>
<td>USD cents per GBP</td>
<td></td>
<td></td>
<td>7950</td>
<td>8000</td>
<td>8050</td>
<td>8100</td>
<td>8150</td>
<td>8200</td>
</tr>
<tr>
<td>Japanese yen</td>
<td>Calls</td>
<td>Sep</td>
<td>1.11</td>
<td>0.82</td>
<td>0.58</td>
<td>0.40</td>
<td>0.27</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec</td>
<td>2.02</td>
<td>1.74</td>
<td>1.49</td>
<td>1.27</td>
<td>1.07</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mar</td>
<td>2.72</td>
<td>2.44</td>
<td>2.18</td>
<td>1.93</td>
<td>1.71</td>
<td>1.51</td>
</tr>
<tr>
<td>JPY12,500,000</td>
<td>Puts</td>
<td>Sep</td>
<td>0.50</td>
<td>0.71</td>
<td>0.97</td>
<td>1.29</td>
<td>1.66</td>
<td>2.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec</td>
<td>1.28</td>
<td>1.50</td>
<td>1.75</td>
<td>2.03</td>
<td>2.34</td>
<td>2.67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mar</td>
<td>1.78</td>
<td>2.00</td>
<td>2.24</td>
<td>2.49</td>
<td>2.77</td>
<td>3.07</td>
</tr>
</tbody>
</table>
20.3 Basics of Foreign Currency Option Contracts

• Currency options at the CME group
 • Contract sizes and expiration months follow those of futures contracts
 • Trading closes on Friday immediately preceding the third Wednesday of the contract month
20.3 Basics of Foreign Currency Option Contracts

- Exchange-listed currency warrants
 - Longer-maturity foreign currency options (> 1 year)
 - Issued by major corporations
 - Actively traded on exchanges such as the American Stock Exchange, London Stock Exchange, and Australian Stock Exchange
- American-style option contracts
- Issuers include AT&T, Deutsche Bank, Ford, Goldman Sachs
 - Not taking on currency risk – likely hedged in OTC market
 - Buying an option at wholesale price and selling at retail price
- Allow retail investors and small corporations that are too small to participate in OTC market to purchase L/T currency options
20.4 The Use of Options in Risk Management

• A bidding situation at Bagwell Construction
 • U.S. company wants to bid on a building in Tokyo (in ¥)
 • Transaction risk since bid is in ¥
 • Cannot use forward hedge because if they do not win, it will be a liability
 • Option allows flexibility in case they do not win

• Using options to hedge transaction risk
 • Forward / futures contracts do not allow you to benefit from the “up” side
 • Allows a hedge but maintains the upside potential from favorable exchange rate changes
20.4 The Use of Options in Risk Management

- Pfimerc
 - Today is Friday, 1st October 2010
 - Receivable of £500,000 on Friday, 19th March 2011
 - S: $1.5834/£
 - 170-day F: $1.5805/£
 - $ 170-day interest rate: 0.20% p.a.
 - £ 34-day interest rate: 0.40% p.a.
 - Option data for March contracts in $/£:

<table>
<thead>
<tr>
<th>Strike</th>
<th>Call Price</th>
<th>Put Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>158</td>
<td>0.0500</td>
<td>0.0481</td>
</tr>
<tr>
<td>159</td>
<td>0.0452</td>
<td>0.0533</td>
</tr>
<tr>
<td>160</td>
<td>0.0408</td>
<td>0.0589</td>
</tr>
</tbody>
</table>
20.4 The Use of Options in Risk Management

- How should Pfimerc hedge?
 - £ put option: right (but not obligation) to sell £ at a specific price if the value of the £ falls
 - In order to sell £500,000, Pfimerc must pay:
 - £500,000 × ($0.0481/£) = $24,050
 - Exercise option if £ falls below $1.58/£:
 - £500,000 × \(\frac{1.58}{\text{£}} \) = $790,000 if \(S(t + 170) \leq 1.58/\text{£} \)
 - Sell £ in spot market if £ is worth $1.58 in 170 days:
 - £500,000 × \(S(t + 170) > 790,000 \) if \(S(t + 170) > 1.58/\text{£} \)
 - Either way, cost of the put is:
 - \([24,050 \times (1 + (0.002 \times 170/360))] = 24,073\)
 - Minimum revenue is therefore:
 - $790,000 − $24,073 = $765,927
20.4 The Use of Options in Risk Management

• Options as insurance contracts
 • Hedging foreign currency risk with forwards and options
 • Options as insurance contracts
 • As amount of coverage increases so does the cost (premium) to insure
 • Changing the quality of the insurance policy
 • Make ceiling on our cost of the foreign currency as low as possible
Exhibit 20.7 Hedging and Speculating Strategies

<table>
<thead>
<tr>
<th>Underlying transaction</th>
<th>Foreign currency receivable</th>
<th>Foreign currency payable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward hedge (or futures hedge)</td>
<td>Sell forward (Go short)</td>
<td>Buy forward (Go long)</td>
</tr>
<tr>
<td></td>
<td>Buy a put</td>
<td>Buy a call</td>
</tr>
<tr>
<td></td>
<td>Establishes a revenue floor of $K - (1+i)P$</td>
<td>Establishes a cost ceiling of $K + (1+i)C$</td>
</tr>
<tr>
<td>Option hedge</td>
<td>Sell a call</td>
<td>Sell a put</td>
</tr>
<tr>
<td></td>
<td>Imposes a revenue ceiling of $K + (1+i)C$</td>
<td>Imposes a liability floor of $K - (1+i)P$</td>
</tr>
<tr>
<td></td>
<td>but allows unlimited risk</td>
<td>but allows unlimited risk</td>
</tr>
<tr>
<td>Option speculation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
20.4 The Use of Options in Risk Management

• Option valuation – Black and Scholes (1973)
 • The intrinsic value of an option
 • If the owner exercises it, will it make money (in / at / out of the money)?
 • The time value of an option
 • The part of the option’s value that is attributed to the time left to expiry
 • Time value = Option price – intrinsic value
 • Increasing the exercise price (call)
 • Reduced the probability that the option will be exercised so it decreases the option’s value
20.4 The Use of Options in Risk Management

• An increase in the variance
 • The distribution with the larger variance yields possibly larger payoffs so it increase the value of the option

• Increasing the time to expiration
 • American – increases uncertainty of spot rate at maturity so it increases the option’s value
 • European – generally increases the option’s value but it depends because in-the-money European options can lose value as time evolves
Exhibit 20.10 Different Probability Distributions of Future USD/EUR
Exhibit 20.11 Different Probability Distributions of Future USD/EUR
20.5 Combinations of Options and Exotic Options

• Exotic options
 • Options with different payoff patterns than basic options
 • Range forward contract
 • Allows a company to specify a range of future spot rates over which the firm can sell or buy forex at the future spot rate
 • No money up front
 • Cylinder options
 • Allows buyers to specify a desired trading range and either pay money or potentially receive money up front for entering into the contracts
 • Both can be synthesized
 • Buying a call and selling a put (at a lower K)
 • For range forward contract:
 • K must be set such that $P(K_p) = C(K_c)$
20.5 Combinations of Options and Exotic Options

- Average-rate options (or “Asian” option)
 - Most common exotic option
 - Payoff is $\max[0, \hat{S} - K]$
 - \hat{S} defines the average forex rate between the initiation of the contract and the expiration date (source and time interval are agreed upon)
- Barrier options
 - Regular option with additional requirement that either activates or extinguishes the option if a barrier forex rate is reached
- Lookback options
 - Option that allows you to buy/sell at least/most expensive prices over a year (more expensive than regular options)
- Digital options (“binary” options)
 - Pays off principal if K is reached and 0 otherwise
An example of option pricing

• Suppose that we want to buy a call option that allows us to buy euros three months from now at a price of $1.14.

• Suppose there are only two possible values of the euro three months from now – either $1.16 or $1.13.

• Suppose the 3-month interest rate in the U.S. is 0.01 (not annualized), and in Europe is 0.005

• Suppose the current spot exchange rates is 1.15

• I am going to build a portfolio that replicates the payoffs to the option, and then figure out what that portfolio costs.
Replicating portfolio

• I will buy €X, and borrow $Y. The idea is that I am going to find an X and Y that will give me a payoff equal to that of the call option that lets me buys euros for $1.14
• This portfolio I buy today has a cost C given by $C = (1.15 \times X) - Y$
• Now, if I bought the call option, it has two possible payoffs. Suppose the call option allows me to buy €100 at the price $1.14.
 • If the spot price of euros in 3 months turns out to be $1.13, the call option is worthless.
 • If the spot price of euros in 3 months is $1.16, the value of the call option is $(1.16 - 1.14) \times 100 = 2.00$
• Now we want to see what values of X and Y will give us payoff of $2.00 when the spot exchange rate is $1.16, and $0 when the spot exchange rate is $1.13
Pricing the option

• The value of my portfolio in one month is
 \((S \times \欧元 X)(1.02) - \$Y(1.01)\), where \(S\) is the spot exchange rate in one month.

• We are looking for the values of \(X\) and \(Y\) that satisfy these two equations:
 \(\((1.13 \times \欧元 X)(1.005) - \$Y(1.01) = 0\)
 \(\((1.16 \times \欧元 X)(1.005) - \$Y(1.01) = 2.00\)

• These are two linear equations in two variables, \(X\) and \(Y\), which we can solve
• We find \(\欧元 X = \欧元 66.335\) and \(\$Y = \$74.59\)
• Then the cost today of the portfolio that has the same payoff as the option is
 • \(C = (1.135 \times \欧元 X) - \$Y = (1.15 \times \欧元 66.335) - \$74.59 = \$1.695\)
 • \$1.695 would be the price of the call option
Greater variance

• Suppose instead of $1.13 and $1.16 as possible future spot exchange rates, the possibilities had a greater variance but the same mean: $1.12 and $1.17
• The option’s value when $S = 1.17 is $(1.17 - 1.14) \times \€100 = $3.00
• We are looking for the values of X and Y that satisfy these two equations:
 \[(1.12 \times \€X)(1.005) - Y(1.01) = 0\]
 \[(1.17 \times \€X)(1.005) - Y(1.01) = 3.00\]
• These are two linear equations in two variables, X and Y, which we can solve
• We find $\€X = \€59.70$ and $Y = $66.53
• Then the cost today of the portfolio that has the same payoff as the option is
 • $C = (1.135 \times \€X) - Y = (1.15 \times \€59.70) - 66.53 = $2.125
 • $2.125 would be the price of the call option instead of $1.695