Econ 702
Spring, 2020
C. Engel

Answers to Homework 2

1. Suppose that the production function is the following:

$$
Y_{t}=F\left(K_{t}, N_{t}\right)=K_{t}^{\alpha} N_{t}^{1-\alpha}+\gamma\left(K_{t}+c N_{t}\right)
$$

It is assumed that $\gamma, c>0$ and $0<\alpha<1$.
a. Assume the price of the good is one. Show the profit of a firm with the above production function equals zero.

Answer:

The profit function is given by $\Pi\left(K_{t}, N_{t}\right)=Y_{t}-w_{t} N_{t}-R_{t} K_{t}$. The First Order Conditions with respect to N_{t} and K_{t} are;

$$
\begin{gathered}
w_{t}=F_{N}\left(K_{t}, N_{t}\right)=(1-\alpha) K_{t}^{\alpha} N_{t}^{-\alpha}+\gamma c \\
R_{t}=F_{K}\left(K_{t}, N_{t}\right)=\alpha K_{t}^{\alpha-1} N_{t}^{1-\alpha}+\gamma
\end{gathered}
$$

By plugging above conditions into the profit function, one can get

$$
\Pi\left(K_{t}, N_{t}\right)=K_{t}^{\alpha} N_{t}^{1-\alpha}+\gamma\left(K_{t}+c N_{t}\right)-(1-\alpha+\alpha) K_{t}^{\alpha} N_{t}^{1-\alpha}-\gamma c N_{t}-\gamma K_{t}=0
$$

The profit of a firm is zero for any nonnegative values of K_{t} and N_{t}.
b. What are the degrees of homogeneity for the first partial derivatives of output with respect to K_{t} and $N_{t}\left(F_{K}\left(K_{t}, N_{t}\right)\right.$ and $\left.F_{N}\left(K_{t}, N_{t}\right)\right)$?

Answer:
Partial derivatives of output with respect to N_{t} and K_{t} are;

$$
\begin{gathered}
F_{N}\left(K_{t}, N_{t}\right)=(1-\alpha) K_{t}^{\alpha} N_{t}^{-\alpha}+\gamma c \\
F_{K}\left(K_{t}, N_{t}\right)=\alpha K_{t}^{\alpha-1} N_{t}^{1-\alpha}+\gamma
\end{gathered}
$$

For any $x>0$,

$$
\begin{aligned}
F_{N}\left(x K_{t}, x N_{t}\right) & =(1-\alpha)\left(x K_{t}\right)^{\alpha}\left(x N_{t}\right)^{-\alpha}+\gamma c \\
& =x^{\alpha-\alpha}(1-\alpha)\left(K_{t}\right)^{\alpha}\left(N_{t}\right)^{-\alpha}+\gamma c=F_{N}\left(K_{t}, N_{t}\right)
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
F_{K}\left(x K_{t}, x N_{t}\right) & =\alpha\left(x K_{t}\right)^{\alpha-1}\left(x N_{t}\right)^{1-\alpha}+\beta \gamma c \\
& =x^{\alpha-1+1-\alpha} \alpha\left(K_{t}\right)^{\alpha-1}\left(N_{t}\right)^{1-\alpha}+\gamma c=F_{K}\left(K_{t}, N_{t}\right)
\end{aligned}
$$

Both partial derivatives are homogeneous degree 0 .
c. What is the sign (positive, negative or zero) of the cross partial derivative of output with respect to K_{t} and $N_{t}\left(F_{K N}\left(K_{t}, N_{t}\right)\right)$?

Answer:

$$
F_{K N}\left(K_{t}, N_{t}\right)=\alpha(1-\alpha) K_{t}^{\alpha-1} N_{t}^{-\alpha}
$$

The cross partial derivatives are positive given any $0<\alpha<1$ and positive inputs.
d. Take the first partial derivative of the output per worker $\left(Y_{t} / N_{t}\right)$ with respect to capital per worker $\left(K_{t} / N_{t}\right)$. What value does the derivative converge to as $K_{t} / N_{t} \rightarrow$ ∞ ?

Answer:
$\frac{Y_{t}}{N_{t}}=\left(\frac{K_{t}}{N_{t}}\right)^{\alpha}+\gamma\left(\frac{K_{t}}{N_{t}}+c\right)$. Then the partial derivative with respect to capital output ratio is

$$
\frac{\partial\left(Y_{t} / N_{t}\right)}{\partial\left(K_{t} / N_{t}\right)}=\alpha\left(\frac{K_{t}}{N_{t}}\right)^{\alpha-1}+\gamma
$$

Given $0<\alpha<1, \alpha\left(K_{t} / N_{t}\right)^{\alpha-1}$ converges to 0 as K_{t} / N_{t} goes to infinity. So $\frac{\partial\left(Y_{t} / N_{t}\right)}{\partial\left(K_{t} / N_{t}\right)} \rightarrow \gamma$ as $K_{t} / N_{t} \rightarrow \infty$.
2. Suppose that the production function is the following:

$$
Y_{t}=A F\left(K_{t}, N_{t}\right)=A\left[\alpha K_{t}^{\frac{v-1}{v}}+(1-\alpha) N_{t}^{\frac{v-1}{v}}\right]^{\frac{v}{v-1}}
$$

It is assumed that $v \geq 0$ and $0<\alpha<1$.
a. Prove that this production function features constant returns to scale.

Answer:

For any $x>0$,

$$
\begin{aligned}
A F\left(x K_{t}, x N_{t}\right) & =A\left[\alpha\left(x K_{t}\right)^{\frac{v-1}{v}}+(1-\alpha)\left(x N_{t}\right)^{\frac{v-1}{v}}\right]^{\frac{v}{v-1}} \\
& =A\left[x^{\frac{v-1}{v}}\left\{\alpha\left(K_{t}\right)^{\frac{v-1}{v}}+(1-\alpha)\left(N_{t}\right)^{\frac{v-1}{v}}\right\}^{\frac{v}{v-1}}\right. \\
& =x^{\frac{v-1}{v} \cdot \frac{v}{v-1}} A\left[\left\{\alpha\left(K_{t}\right)^{\frac{v-1}{v}}+(1-\alpha)\left(N_{t}\right)^{\frac{v-1}{v}}\right\}\right]^{\frac{v}{v-1}}
\end{aligned}
$$

The last term equals $x A F\left(K_{t}, N_{t}\right)$. The production function is homogeneous degree 1 , therefore features constant returns to scale.
b. What are signs (positive, negative or zero) of the first partial derivatives of output with respect to K_{t} and $N_{t}\left(A F_{K}\left(K_{t}, N_{t}\right)\right.$ and $\left.A F_{N}\left(K_{t}, N_{t}\right)\right)$?

Answer:

$$
\begin{aligned}
A F_{K}\left(K_{t}, N_{t}\right) & =A \alpha\left[\alpha K_{t}^{\frac{v-1}{v}}+(1-\alpha) N_{t}^{\frac{v-1}{v}}\right]^{\frac{v}{v-1}-1} K_{t}^{\frac{v-1}{v}-1} \\
& =A \alpha\left[\alpha K_{t}^{\frac{v-1}{v}}+(1-\alpha) N_{t}^{\frac{v-1}{v}}\right]^{\frac{1}{v-1}} K_{t}^{-\frac{1}{v}} \\
& =A \alpha\left[K_{t}^{\frac{1-v}{v}}\left\{\alpha K_{t}^{\frac{v-1}{v}}+(1-\alpha) N_{t}^{\frac{v-1}{v}}\right\}\right]^{\frac{1}{v-1}} \\
& =A \alpha\left[\alpha+(1-\alpha)\left(\frac{K_{t}}{N_{t}}\right)^{\frac{1-v}{v}}\right]^{\frac{1}{v-1}}
\end{aligned}
$$

So $A F_{K}\left(K_{t}, N_{t}\right)>0$ for any $v \geq 0,0<\alpha<1$ and positive inputs.
Similarly, $A F_{N}\left(K_{t}, N_{t}\right)=A(1-\alpha)\left[\alpha\left(\frac{K_{t}}{N_{t}}\right)^{\frac{v-1}{v}}+(1-\alpha)\right]^{\frac{1}{v-1}}$ and this is also positive.
c. What are signs (positive, negative or zero) of own second partial derivatives of output with respect to K_{t} and $N_{t}\left(A F_{K K}\left(K_{t}, N_{t}\right)\right.$ and $\left.A F_{N N}\left(K_{t}, N_{t}\right)\right)$?

Answer:

$$
A F_{K K}\left(K_{t}, N_{t}\right)=-\frac{A \alpha(1-\alpha)}{v}\left[\alpha+(1-\alpha)\left(\frac{K_{t}}{N_{t}}\right)^{\frac{1-v}{v}}\right]^{\frac{1}{v-1}-1}\left(\frac{K_{t}}{N_{t}}\right)^{\frac{1-v}{v}-1} \frac{1}{N_{t}}
$$

$$
A F_{N N}\left(K_{t}, N_{t}\right)=-\frac{A \alpha(1-\alpha)}{v}\left[\alpha\left(\frac{N_{t}}{K_{t}}\right)^{\frac{1-v}{v}}+1-\alpha\right]^{\frac{1}{v-1}-1}\left(\frac{N_{t}}{K_{t}}\right)^{\frac{1-v}{v}-1} \frac{1}{K_{t}}
$$

The above terms are both negative for given conditions on the parameters and positive inputs.
d. Express the capital per worker as a function of factor price ratio $\left(w_{t} / R_{t}\right)$.

Answer:
The First Order Conditions with respect to N_{t} and K_{t} are;

$$
\begin{gathered}
w_{t}=A F_{N}\left(K_{t}, N_{t}\right)=A(1-\alpha)\left[\alpha K_{t}^{\frac{v-1}{v}}+(1-\alpha) N_{t}^{\frac{v-1}{v}}\right]^{\frac{v}{v-1}-1} N_{t}^{\frac{v-1}{v}-1} \\
R_{t}=A F_{K}\left(K_{t}, N_{t}\right)=A \alpha\left[\alpha K_{t}^{\frac{v-1}{v}}+(1-\alpha) N_{t}^{\frac{v-1}{v}}\right]^{\frac{v}{v-1}-1} K_{t}^{\frac{v-1}{v-1}}
\end{gathered}
$$

Then the factor price ratio is

$$
\frac{w_{t}}{R_{t}}=\frac{1-\alpha}{\alpha}\left(\frac{K_{t}}{N_{t}}\right)^{\frac{1}{v}}
$$

The capital per worker expressed as a function of the factor price ratio is

$$
\frac{K_{t}}{N_{t}}=\left\{\frac{\alpha}{1-\alpha} \frac{w_{t}}{R_{t}}\right\}^{v}
$$

e. Under what conditions on the parameters is the labor share of output $\left(w_{t} N_{t} / Y_{t}\right)$ is increasing or decreasing with the factor price ratio?

Answer:

$$
\begin{aligned}
\frac{w_{t} N_{t}}{Y_{t}}=\frac{A(1-\alpha)\left[\alpha K_{t}^{\frac{v-1}{v}}+(1-\alpha) N_{t}^{\frac{v-1}{v}}\right]^{\frac{v}{v-1}-1} N_{t}^{\frac{v-1}{v}}}{A\left[\alpha K_{t}^{\frac{v-1}{v}}+(1-\alpha) N_{t}^{\frac{v-1}{v}}\right]^{\frac{v}{v-1}}} \\
=\frac{(1-\alpha) N_{t}^{\frac{v-1}{v}}}{\alpha K_{t}^{\frac{v-1}{v}}+(1-\alpha) N_{t}^{\frac{v-1}{v}}}=\frac{1-\alpha}{\alpha\left(\frac{K_{t}}{N_{t}}\right)^{\frac{v-1}{v}}+1-\alpha}
\end{aligned}
$$

We already know the capital per worker is a function of the factor price ratio from part d. Using the result, one can get

$$
\frac{w_{t} N_{t}}{Y_{t}}=\frac{1-\alpha}{\alpha\left(\frac{\alpha}{1-\alpha} \frac{w_{t}}{R_{t}}\right)^{v-1}+1-\alpha}=\frac{1}{\left(\frac{\alpha}{1-\alpha}\right)^{v}\left(\frac{w_{t}}{R_{t}}\right)^{v-1}+1}
$$

Partial derivative of labor share with respect to factor price ratio is

$$
\frac{\partial\left(\frac{w_{t} N_{t}}{Y_{t}}\right)}{\partial\left(\frac{w_{t}}{R_{t}}\right)}=\frac{(1-v)\left(\frac{\alpha}{1-\alpha}\right)^{v}\left(\frac{w_{t}}{R_{t}}\right)^{v-2}}{\left\{\left(\frac{\alpha}{1-\alpha}\right)^{v}\left(\frac{w_{t}}{R_{t}}\right)^{v-1}+1\right\}^{2}}
$$

If $v>1$, the above term is negative; labor share is decreasing with factor price ratio. If $v<1$, the above term is positive; labor share is increasing with factor price ratio.

