Econ 702
Spring 2020
C. Engel

Homework 4

This problem set is meant to illustrate the importance of a government being able to commit to a policy. It proceeds in steps.

1. Suppose an individual lives for two periods. His utility function is

$$
U=c_{1}+\sqrt{c_{2}}
$$

where c_{1} is consumption in the first period and c_{2} is consumption in the second period. At the beginning of period 1 , he is born with income equal to $y(y>1)$. He can either consume that income, or he can save it. If he saves it, he accumulates k capital. That is, $y-c_{1}=k$.

Whatever he saves can be used to produce a consumption good in the second period, and he can consume whatever he produces. The production function is k, so $c_{2}=k$.

We can substitute out for c_{1} and c_{2} from these equations and write utility as:

$$
U=y-k+\sqrt{k} .
$$

The individual takes y as given, and chooses k to maximize this expression.
Find the optimal value of k by taking the first-order condition for maximizing U in the above expression. Using your solution for k, and the equations $c_{1}=y-k$ and $c_{2}=k$, solve for c_{1} and c_{2} in terms of y. Then, using your solutions for c_{1} and c_{2}, express utility, $U=c_{1}+\sqrt{c_{2}}$, as a function of y.

Answer:
The FOC with respect to k is

$$
\frac{\partial U}{\partial k}=-1+\frac{1}{2} k^{-1 / 2}=0
$$

The optimal value of k is $1 / 4$. This gives each period consumption as

$$
c_{1}=y-k=y-1 / 4, c_{2}=k=1 / 4
$$

Then the utility in terms of y is

$$
U=y-k+\sqrt{k}=y-1 / 4+1 / 2=y+1 / 4
$$

2. This problem is exactly like the previous one, except that in period 2, the government will impose a tax on saving equal to t. Assume $0<t<1$. The individual knows at time 1 what the tax rate will be at time 2 . He will have only an amount $(1-t) k$ available to produce output in period 2.

We have $c_{1}=y-k$ but now, $c_{2}=(1-t) k$.
We can write utility as:

$$
U=y-k+\sqrt{(1-t) k}
$$

Find the optimal value of k by taking the first-order condition for maximizing U in the above expression. Solve for k as a function of the variable t. (Let's call this function $g(t)$, for reference in problem 5 below.)

Using your solution for k, and the equations $c_{1}=y-k$ and $c_{2}=(1-t) k$, solve for c_{1} and c_{2} in terms of y and t.

Then, using your solutions for c_{1} and c_{2}, express utility, $U=c_{1}+\sqrt{c_{2}}$, as a function of y and t.

Answer:
The FOC with respect to k is

$$
\frac{\partial U}{\partial k}=-1+\frac{1}{2}(1-t)^{-1 / 2} k^{-1 / 2}(1-t)=-1+\frac{1}{2}(1-t)^{1 / 2} k^{-1 / 2}=0
$$

The optimal value of k in terms of t is

$$
k=\frac{1-t}{4}
$$

Using this, one can get c_{1}, c_{2} and U as a function of y and t.

$$
c_{1}=y-\frac{1-t}{4}, c_{2}=\frac{(1-t)^{2}}{4}, U=y-\frac{1-t}{4}+\frac{1-t}{2}=y+\frac{1-t}{4}
$$

3. From question 2, solve for the government's tax revenue, $R=t k$, as a function of t, where R stands for revenue. That is, in question 2, you solved for k as a function of t. Now simply write the expression for revenue, $R=t k$, as a function of t.

Answer:
Plugging optimal k from question 2 into the revenue function gives the following

$$
R=k t=\frac{t(1-t)}{4}
$$

4. Now suppose the government at time 1 announces the tax rate it will set. Its objective is to maximize the sum of utility and the triple of its tax revenue, $U+3 R$. Take your expression for utility from question 2 , as a function of y and t, and revenue from question 3 , as a function of t. Add them together to get $U+3 R$. Find the first-order condition for choosing t to maximize $U+3 R$. Solve for the optimal tax rate, t, from that first-order condition.

Answer:
The government maximizes the following objective

$$
U+3 R=c_{1}+\sqrt{c_{2}}+3 t k=y-\frac{1-t}{4}+\sqrt{\frac{(1-t)^{2}}{4}}+\frac{3 t(1-t)}{4}=y+\frac{1-t}{4}+\frac{3 t(1-t)}{4}
$$

The FOC with respect to t is

$$
\frac{\partial(U+3 R)}{\partial t}=-\frac{1}{4}+\frac{3}{4}(1-t)-\frac{3}{4} t=0
$$

The solution for the optimal tax rate t is $1 / 3$.
5. Suppose now instead of setting the tax rate at time 1, the government sets the tax rate at time 2 . Now the government does not care about the past. It only wants to maximize the sum of current utility and the triple of tax revenue, $\sqrt{c_{2}}+3 R$. The government takes household saving k as given to solve for optimal tax rate. That is, take $c_{2}=(1-t) k$ and $R=t k$. Add them together to get $\sqrt{(1-t) k}+3 t k$. Find the optimal value of t by taking the first-order condition for maximizing $\sqrt{(1-t) k}+3 t k$. Solve for t in terms of k.

You now have solved for t as some function of k, call it $f(k)$. Assume the households can figure out what tax rate the government will set in period 2 when they make their investment decision in period 1. Take your solution for the household's choice of k as a function of t, which we called $g(t)$, and replace k in the function $f(k)$ so that we get $t=f(g(t))$. You should get a quadratic equation for t. Solve for the optimal tax rate, t (The solutions for a quadratic equation of the form $a t^{2}+b t+c=0,(a \neq 0)$ are $\left.t=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}\right)$. Among the two solutions you get, which value of t is the only feasible one? (Hint: Drop one of solutions for t which is greater than one, making c_{2} negative.)

Answer:
The government maximizes the following objective

$$
\sqrt{c_{2}}+3 R=\sqrt{(1-t) k}+3 t k
$$

The FOC with respect to t is

$$
\frac{\partial\left(\sqrt{c_{2}}+3 R\right)}{\partial t}=-\frac{1}{2}(1-t)^{-1 / 2} k^{1 / 2}+3 k=0
$$

The optimal t in terms of k is

$$
t=f(k)=1-\frac{1}{36 k}
$$

We know the household's optimal saving decision as a function of t from question 2 .

$$
k=g(t)=\frac{1-t}{4}
$$

Now plug this $k=g(t)$ into $t=f(k)$. Then one can get

$$
t=f(g(t))=1-\frac{1}{9(1-t)}
$$

Multiplying $9(1-t)$ on both sides of the above equation and rearranging give the following quadratic equation for t.

$$
9 t^{2}-18 t+8=0
$$

The solutions for the above equation are

$$
t=\frac{18 \pm \sqrt{36}}{18}=\frac{3 \pm 1}{3}
$$

A solution for t is $4 / 3$ or $2 / 3.4 / 3$ is not a feasible solution; if t is greater than one, $c_{2}=(1-t) k$ goes negative. Therefore, the only feasible solution for tax rate is $2 / 3$.
6. Finally, compare your answers for the tax rate in question 4 to question 5. Is the tax rate higher when the government can commit to the tax rate ahead of time in period 1 (as in question $4)$ or when it cannot commit (as in question 5)? In which case is saving higher?

Answer:

Tax rate and saving when the government can commit are

$$
t=1 / 3, k=\frac{1-t}{4}=\frac{2}{12}
$$

Tax rate and saving when the government cannot commit are

$$
t=2 / 3, k=\frac{1-t}{4}=\frac{1}{12}
$$

Tax rate is higher when the government cannot commit to it and the saving is higher when the government can commit to the tax rate.

Bonus: Show that utility $\left(c_{1}+\sqrt{c_{2}}\right)$ is higher under commitment.
Answer:
Utility under commitment is

$$
c_{1}+\sqrt{c_{2}}=y-k+\sqrt{(1-t) k}=y-k+\frac{(1-t)}{2}=y+\frac{1-t}{4}=y+\frac{2}{12}
$$

Utility without commitment is

$$
c_{1}+\sqrt{c_{2}}=y-k+\sqrt{(1-t) k}=y-k+\frac{(1-t)}{2}=y+\frac{1-t}{4}=y+\frac{1}{12}
$$

The household utility is higher under commitment.

