Econ 702 Spring, 2020 C. Engel

Answers to Homework 6

- Here we want to investigate how people's savings behavior is affected by the change in uncertainty. The CBOE Volatility Index (VIX) is a popular measure for market's expectation about uncertainty. Download quarterly, seasonally adjusted data on net private saving, (nominal) Gross Domestic Product and CBOE Volatility Index: VIX of US for the period 1990Q1-2019Q2. All of these can be downloaded from FRED, the Federal Reserve Bank of St. Louis database: <u>https://fred.stlouisfed.org/</u>
 - a. Generate the net private saving to GDP ratio by dividing net private saving by GDP. Then calculate the growth rate of the ratio $(\{(S/Y)_t - (S/Y)_{t-1}\}/(S/Y)_{t-1})$. Calculate the growth rate of one period lagged VIX index $((VIX_{t-1} - VIX_{t-2})/VIX_{t-2})$. Create a scatter plot of lagged VIX growth rate on the horizontal axis and the growth rate of net private saving to GDP ratio on the vertical axis with a trendline. (Note: We use lagged VIX growth rate since it could take some time (a quarter) for people to adjust their savings behavior to the change in uncertainty.)

Answers:

The scatter plot of growth rate of net private savings to GDP against lagged growth rate of VIX

b. Run a regression of the growth rate of net private saving to GDP ratio on the growth rate of one period lagged VIX index. Report R-squared and coefficient estimate and t-statistic for the lagged VIX growth rate.

Answers: R squared: 0.0626, coefficient estimate: 0.1038, t-statistic: 2.7717

- 2. Here we want to investigate whether people would lower their consumption when the interest rate increases on average, as suggested in the two period model learned in class. Download 5-Year Treasury Inflation-Indexed Security, Constant Maturity (this is a measure for the real interest rate) and real personal consumption expenditures per capita (Chained 2012 dollars) for the period 2007Q1-2019Q3. All of these can be downloaded from FRED, the Federal Reserve Bank of St. Louis database: https://fred.stlouisfed.org/
 - a. Calculate the growth rate of consumption per capita $((C_t C_{t-1})/C_{t-1})$. Create a scatter plot of Treasury interest rate on the horizontal axis and consumption growth rate on the vertical axis with a trendline.

Answers:

The scatter plot of growth rate of consumption against real interest rate

b. Run a regression of consumption growth rate on Treasury interest rate. Report R-squared and coefficient estimate and t-statistic for Treasury interest rate.

Answers: *R* squared: 0.1190, coefficient estimate: -0.0018, t-statistic: -2.5734

3. Suppose we have the following linear consumption function and the invest demand function.

$$C_{t} = c_{1}(Y_{t} - G_{t}) + c_{2}(Y_{t+1} - G_{t+1}) - c_{3}r_{t}$$
$$I_{t} = -d_{1}r_{t} + d_{2}A_{t+1} + d_{3}K_{t}$$

Here c_1 through c_3 and d_1 through d_3 are fixed parameters governing the sensitivity of consumption and investment to different factors relevant for those decisions. The resource constraint is

$$Y_t = C_t + I_t + G_t$$

a. Take $(G_t, G_{t+1}, K_t, A_{t+1}, Y_{t+1})$ as exogenously given. Using the given consumption, investment function and the resource constraint, derive an algebraic expression for the *IS* curve. What is the expression for the slope of the *IS* curve $(\partial Y_t / \partial r_t)$?

Answers: After plugging consumption and investment function into the resource constraint, one can substitute out C_t and I_t to get

$$Y_{t} = c_{1}(Y_{t} - G_{t}) + c_{2}(Y_{t+1} - G_{t+1}) - c_{3}r_{t} - d_{1}r_{t} + d_{2}A_{t+1} + d_{3}K_{t} + G_{t}$$

The IS curve is

$$Y_{t} = G_{t} - \frac{1}{1 - c_{1}} (c_{2}G_{t+1} - c_{2}Y_{t+1} - d_{2}A_{t+1} - d_{3}K_{t}) - \frac{c_{3} + d_{1}}{1 - c_{1}}r_{t}$$

b. Suppose the parameters are as follows: $c_1 = 0.6$, $c_2 = 0.5$, $c_3 = 10$, $d_1 = 20$, $d_2 = 1$ and $d_3 = 0.5$. Suppose that $Y_{t+1} = 15$, $G_t = 10$, $G_{t+1} = 10$, $A_{t+1} = 5$ and $K_t = 15$. Suppose that $r_t = 0.02$. Calculate the value of Y_t .

Answers: The IS curve for the given parameters and exogenous variables is $Y_r = 47.5 - 75r_r$

Given $r_t = 0.02$, $Y_t = 47.5 - 75 * 0.02 = 46$.

c. Create a range of values of r_t , ranging from 0.01 to 0.2, with a gap of 0.001 between

values. Then solve for Y_t for each value of r_t (You don't need to report every value of Y_t). Plot the *IS* curve with r_t on the vertical axis and Y_t on the horizontal axis.

Answers:

The IS curve

d. Create another version of your *IS* curve when $A_{t+1} = 7$ instead of 5. Plot this along with the original *IS* curve with $A_{t+1} = 5$. Discuss how the change of A_{t+1} affects on the location of *IS* curve.

Answers: The IS curve when $A_{t+1} = 7$ is

Higher A_{t+1} shifts IS curve to the right (or upward).