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The equations of the Solow growth model, in per-worker terms, are 

given by: 

 

 

   
  

   
 

 

 

 



3 

 

Cobb-Douglas case 
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 Graph 1+tk  against tk   
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Why does ( ) ( )1 1 + = + −t t tk sAf k k  look like this? 

 

Find the slope of the curve: 

   
This slope is positive since 0 f . 

The slope is decreasing since 0 f . 

We assume Inada conditions: 
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 The Inada conditions tell you the slope of the curve initially is 

infinite, and eventually falls to zero. 

 

 So the curve must eventually rise above the 45 degree line (the line 

where 1+ =t tk k .) But given our assumptions, it will cut it again from 

above one more time. 

 

 At the point where the curve cuts the 45 degree line, 1+ =t tk k . That is 

the “steady state”. That is, at that point, ( ) ( )1 1 += = + −t t t tk k sAf k k . 

The steady state level of capital per worker is determined by the equation 

 

  ( ) ( )* * *1 = + −k sAf k k  

 

Notice that I dropped the time subscript here. Why? 
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Convergence to the Steady State 

 

 Do we converge to the steady state? 

 

 That is, if initial capital per worker at time t is such that *tk k , does 

capital per worker increase toward *k ? 

 

 If initial capital per worker  is such that *tk k , does capital per 

worker fall toward *k ? 

 

 We can answer that mechanically on the next two graphs. 
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What is the economics behind convergence to the steady state? 

 

Why is there convergence at all? What conditions are needed for 

convergence? 
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Why do we stay at a steady state? 

 

Alternative graph may help us understand. This is the graph that Solow 

used and is in a lot of textbooks. 

 

It graphs the new investment, ( )tsAf k , and the amount of investment 

required to replace depreciating capital,  tk . 

 

When new investment is greater than “required” investment, the capital 

stock increases. When it is lower than “required” investment, the capital 

stock falls. 

 

At the steady state, new investment is just enough to replace depreciating 

capital. 
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The steady state 

 

 We can see that in this version of the Solow model, if capital in a 

country is scarce initially, then capital per worker will increase. 

 

 In turn, because output per worker depends on capital per worker, it 

will also increase over time. 

 

 So, a country with scarce capital, *tk k , will experience growth. 

 

 But the growth does not continue forever. Eventually output per 

worker approaches a steady state determined by capital per worker. 

 

 In understanding why countries have different levels of income per 

worker, it is then useful to understand what determines the steady state 

levels of capital per worker in the Solow model. 
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 In the case of Cobb-Douglas production function, the equation 

( ) ( )* * *1 = + −k sAf k k  is given by: 

    
 

The solution to this is: 

 

     
 

Higher saving, higher productivity (and lower depreciation) give a higher 

long-run capital per worker level.  
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 We can also find: 

 

     
 

Note now that higher saving has offsetting effects on steady state 

consumption. We will return to that later. 
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Dynamic effects of an increase in s 

 

 We will consider graphically the dynamic effects of an increase in 

the saving rate. 
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Next, the dynamic effects of a one-time increase in A 

 

What leads to higher aggregate productivity? 

- Each firm is more productive? 

- New inventions? 

- Better trained workers? 

- Better allocation of resources across firms 

o Which may arise because of better financial markets 

- Better government or better laws? 

- Geographic forces? 

 

 

 



21 

 

 



22 

 

 



23 

 

 

 



24 

 

Assessment 

 

 An increase in the saving rate or an increase in productivity lead to 

higher output in the long run. 

 

 They do not lead to higher growth in the long run. 

 

 However, while the saving rate cannot grow forever, perhaps 

productivity can. That may be a source for long run growth. 

 

 There is certainly a relationship between TFP and income per worker 

in the data. 

 

 The relationship between the saving rate and incomer per worker is 

weaker (but measures usually do not include saving by accumulating 

human capital.) 
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Cobb-Douglas case 

 

 The CD production function is not just a simple example. It helps us 

understand some of the “facts”. 

 

 It was noted that the return to capital, R, is approximately constant 

over time. Also, the capital/output ratio 
K k

Y y
=  is roughly constant. 

 

 Together those imply that capital’s share, 
RK Rk

Y y
=  is constant. 

 

 The facts also noted that labor’s share, 
wN w

Y y
=  is roughly constant. 

 

 These are all properties of the CD production function. 
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 Recall, 1Y AK N −= . 

 

 1 1Y Y
R AK N

K K

  − −
= = =


, which implies 
RK

Y
= . 

 

 Capital’s share is a constant,  . Since there are no profits under 

constant-returns-to-scale, labor’s share is simply 1 − . 

 

 We saw previously that in steady state, 

1

1
* sA

k




− 
=  
 

 and 
*y Ak= . 

 

Hence, 
*

*

k ssA
A

y  

 
= = 
 

. Productivity growth does not affect 

capital/output ratio.  

 

 
* */ /R y k s = = , which also does not depend on A. 
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Consumption 

 

 Since saving increases long-run output, should we save as much as 

possible? 

 

 Ultimately, the objective of output is to allow for consumption. If we 

save too much, we are not leaving enough output for consumption. 

 

 So there is a tradeoff. 

 

 What level of saving maximizes long-run consumption? 

 

 We have ( ) ( )* *1c s Af k= − , where *k  satisfies ( ) **sAf k k= . 

 

 To find the optimal level of s, we want to choose s to maxmize *c . 
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( ) ( )* *1c s Af k= −  

 

First-order condition: ( ) ( ) ( )
* *

* *1 0
dc dk

Af k s Af k
ds ds

= − + − =  

 

We need to find 
*dk

ds
. We had ( ) **sAf k k= . Then: 

 

  ( ) ( )
* *

* *
dk dk

Af k sAf k
ds ds

+ = , which we solve to find 

 

 
( )
( )

**

*

Af k dk

sAf k ds
=

−
.  

 

Subsitute this into the first-order condition: 
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( ) ( ) ( )
( )
( )

*
* * *

1 0
*

Af kdc
Af k s Af k

ds sAf k

 
= − + − = 

− 
 

 

Now simplify this expression: 

 

 

( ) ( )
( )

( ) ( )
( )

( ) ( ) ( )

( )

*

*

*

*

1
1 1 0

*

1
1 1

*

1 *

s Af k
sAf k

s Af k
sAf k

s Af k sAf k

Af k









 
− + − = 

− 

 
− = 

− 

 − = −

 =

 

 

 That is, we want the saving rate that gives us ( )*Af k  = . 
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Intuition: 

 

 Suppose ( )*Af k   . Then raising the capital stock raises steady-

state output by ( )*Af k , and raises steady-state investment by  . If 

output goes up more than investment, than consumption will rise. 

 

 The reverse is true if ( )*Af k   . 

 

 Call the level of saving that maximizes steady-state consumption the 

“golden rule” level of saving, grs . Now examine how consumption 

evolves over time if the saving rate rises: 
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 In the second case, when the saving rate is already above the golden 

rule level, and increase in saving lowers consumption in all periods! 

 

 This is “dynamically inefficient”. 
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 Is it optimal to maximize steady-state consumption? 

 

 In a sense, we spend almost all our time “near” the steady state. You 

can define “near” arbitrarily – say we are near the steady state if 
*

tk k −   for some arbitrary  . For any  , the fraction of time we 

spend near the steady state is equal to one. 

 

 So, if we give equal weight to the future as to the present, then we do 

want to maximize steady-state consumption per person. 

 

 But as we shall see later, people probably put more weight on current 

consumption than future consumption. Since we must give up current 

consumption to get future consumption, it will not in general be optimal 

to maximize steady-state consumption.  

 

 Optimal saving will be even lower than grs ! 
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Lucas Paper 

 

 Lucas presents a version of the Solow growth model that is similar to 

the one we will look at in the next chapter. However, the 

consumption/saving decision is optimal (rather than the assumption that 

a fixed fraction of income is saved.) 

 

 Lucas emphasizes the fact that higher saving, or a higher level of 

productivity, have level effects on output in the long run, but do not have 

growth rate effects in the long run. 

 

 If we have 
t t ty A k= , then it follows that y A k

t t tg g g= + . If the 

capital/labor ratio reaches a steady state, output per worker can only 

grow if TFP grows. (In the next chapter, we introduce “labor enhancing 

productivity.” In that model, TFP is constant, but we get long-run growth 

because k grows in the long run.) 
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 Lucas points out that if the Solow model is right, then low-income 

countries must have very low capital/labor ratios. But the Solow model 

assumes no interaction with the rest of the world. Why doesn’t capital 

flow from the rest of the world? 

 

Human Capital 

 

 Lucas also emphasizes the importance of human capital. 

 

 Suppose we interpreted K as human capital in this model.  

 

 Human capital does not depreciate. That is, we might have 0 = . 

 

 How does the Solow model look when 0 = ? 

 

 Recall this graph: 
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 If 0 = , growth would continue forever. 

 

 We have in that case simply ( )1t t tk k sAf k+
− = . 

 

 But there is something unreasonable about assuming a constant 

saving rate. 

 

 Under the Inada conditions, as tk → , ( ) 0tf k → .  

 

 It would be weird to keep saving a constant fraction of income (and 

investing in human capital), even as the rate of return on human capital 

goes to zero. 
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 We will look at models of optimal consumption/saving soon. We 

might derive an equation like this: 

 

 ( )1
11t

t

t

C
R

C
+

+= + , where   is positive but less than one. It means 

that people “discount” future consumption relative to current 

consumption. 

 

 Otherwise, let’s take the rest of the Solow model as before, with the 

Cobb-Douglas production function, but with 0 = . To keep things 

simple, let us set 1tN = . 

 

 Then 1

t tR AK −= , and  

 

 1t t t t tK K A K C

+ − = −  
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We can express the model in two equations: 

 

 ( )11
11t

t

t

C
AK

C

  −+
+= +   and 

1t t t t tK K A K C

+ − = −  

 

What is the steady state? We have 1 1t

t

C

C

+ = , so ( )( )
1

*1 1 A K


 
−

= + . 

 

This tells us that 

1

1
*

1
K A






− 
=  

− 
.  

 

In the steady state, 
1

1
* * * 1

1
C Y AK A




 






−
−
 

= = =  
− 

. 
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 Higher productivity (A), greater “patience” (higher  ), and a greater 

capital share ( ), lead to higher consumption and income in the long run. 

 

We can look at dynamics in a “phase diagram” 

 

  

 

 

 

 

 

 

 

 

 

  

C 

K 

1t tC C+ =  

1t tK K+ =  

*K  
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C 

K 

1t tC C+ =  

1t tK K+ =  

*K  
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Lesson from this model: 

 

 We still have a steady state with no long run growth! 

 

 Saving more this period, increases the capital stock next period. 

 

 As the capital stock increases, the marginal product of capital falls. 

 

 Output approaches a steady state. 

 

 The optimal consumption path when below the steady state is to have 

high consumption growth initially. But as the MPK falls, consumption 

growth falls, and consumption growth approaches zero as *R  goes 

toward 
1 



−
. 


