The model of an optimizing household forms the basis for macroeconomic models of consumption and saving.

Dynamic

Two-period: Why?

Representative household

Periods t and $t + 1$.

Household chooses C_t, S_t, C_{t+1}, S_{t+1} given Y_t, Y_{t+1}, r_t

Exogenous vs. endogenous
Household’s budget constraints:

\[C_t + S_t \leq Y_t \]
\[C_{t+1} + S_{t+1} \leq Y_{t+1} + (1 + r_t)S_t \]

The latter can be written as:

\[C_{t+1} + S_{t+1} - S_t \leq Y_{t+1} + r_t S_t \]

(“saving” and “savings”)

Under optimality, we will have \(S_{t+1} = 0 \) and budget constraint will hold with equality.
We have then:

\[C_t + S_t = Y_t \]
\[C_{t+1} = Y_{t+1} + (1 + r_t) S_t \]

Solve out for \(S_t \) and rearrange to get a single constraint:

\[C_t + \frac{C_{t+1}}{1 + r_t} = Y_t + \frac{Y_{t+1}}{1 + r_t} \]

“present value” and “current value”
Households maximize

\[U = u(C_t) + \beta u(C_{t+1}), \quad 0 \leq \beta < 1 \]

Marginal utility is positive, always:

\[u'(\cdot) > 0 \]

Diminishing marginal utility:

\[u''(C_t) < 0 \]
Some example utility functions:

\[u(C_t) = \theta C_t, \quad \theta > 0 \]
\[u(C_t) = C_t - \frac{\theta}{2} C_t^2, \quad \theta > 0 \]
\[u(C_t) = \ln C_t \]
\[u(C_t) = \frac{C_t^{1-\sigma} - 1}{1 - \sigma} = \frac{C_t^{1-\sigma}}{1 - \sigma} - \frac{1}{1 - \sigma}, \quad \sigma > 0 \]

The first one is not concave (the second derivative is zero.)

The quadratic utility has the problem that the first derivative turns negative after a certain point.
Figure 9.1: Utility and Marginal Utility

\[u(C_t) \]

\[u'(C_t) \]
The household’s problem:

$$\max_{C_t, C_{t+1}} U = u(C_t) + \beta u(C_{t+1})$$

subject to:

$$C_t + \frac{C_{t+1}}{1 + r_t} = Y_t + \frac{Y_{t+1}}{1 + r_t}.$$

We could use a Lagrangian to set up this problem. Instead, we will substitute out for C_{t+1}. That is, we will solve for C_{t+1} from the constraint:

$$C_{t+1} = (1 + r_t)(Y_t - C_t) + Y_{t+1}.$$
Then substitute this solution into the utility function to get an unconstrained maximization problem:

\[
\max_{C_t} \quad U = u(C_t) + \beta u ((1 + r_t)(Y_t - C_t) + Y_{t+1})
\]

The first-order condition is:

\[
\frac{\partial U}{\partial C_t} = u'(C_t) - (1 + r_t) \beta u'((1 + r_t)(Y_t - C_t) + Y_{t+1}) = 0
\]

But since \(C_{t+1} = (1 + r_t)(Y_t - C_t) + Y_{t+1} \), we can write

\[
u'(C_t) - (1 + r_t) \beta u'(C_{t+1}) = 0
\]
It is intuitive to write this as:

\[u'(C_t) = \beta (1 + r_t) u'(C_{t+1}) \]

This is called the Euler equation.

We could write this as the marginal rate of substitution equals the relative price (of consumption at time \(t \) relative to consumption at time \(t + 1 \)):

\[\frac{u'(C_t)}{\beta u'(C_{t+1})} = 1 + r_t. \]
Example: $u(C) = \ln(C)$:

$$\frac{1}{C_t} = \beta (1 + r_t) \frac{1}{C_{t+1}}$$

or

$$\frac{C_{t+1}}{C_t} = \beta (1 + r_t)$$
Example: \(u(C) = \frac{1}{1-\sigma} C^{1-\sigma} \)

\(C_t^{\sigma} = \beta (1 + r_t) C_{t+1}^{\sigma} \)

We get in this case, approximately, if we use

\(\ln(1 + r_t) = r_t \)

that

\(\ln C_{t+1} - \ln C_t = \frac{1}{\sigma} \ln \beta + \frac{1}{\sigma} r_t. \)
How consumption changes with income and interest rates

We will do this algebraically first, then graphically.

We had the first-order condition:

\[u'(C_t) - (1 + r_t) \beta u' \left((1 + r_t)(Y_t - C_t) + Y_{t+1} \right) = 0 \]

Take the derivatives. First, holding \(r_t \) and \(Y_{t+1} \) constant, find \(\frac{\partial C_t}{\partial Y_t} \):

\[u''(C_t) \frac{\partial C_t}{\partial Y_t} + (1 + r_t)^2 \beta u''(C_{t+1}) \frac{\partial C_t}{\partial Y_t} - (1 + r_t)^2 \beta u''(C_{t+1}) = 0. \]

Solve to find:

\[\frac{\partial C_t}{\partial Y_t} = \frac{(1 + r_t)^2 \beta u''(C_{t+1})}{u''(C_t) + (1 + r_t)^2 \beta u''(C_{t+1})} > 0 \]
We see an increase in current income will increase consumption. But notice that \(0 < \frac{\partial C_t}{\partial Y_t} < 1 \). When current income increases, current consumption rises, but so does saving.

Suppose we learn at time \(t \) that \(Y_{t+1} \) will change. Now hold \(r_t \) and \(Y_t \) constant.

We find:
\[
u''(C_t) \frac{\partial C_t}{\partial Y_{t+1}} + (1 + r_t)^2 \beta u''(C_{t+1}) \frac{\partial C_t}{\partial Y_{t+1}} - (1 + r_t)u''(C_{t+1}) = 0.
\]

This gives us
\[
\frac{\partial C_t}{\partial Y_{t+1}} = \frac{(1 + r_t)u''(C_{t+1})}{u''(C_t) + (1 + r_t)^2 \beta u''(C_{t+1})} > 0
\]

The household can borrow at time \(t \) if \(Y_{t+1} \) rises enough.
Finally, holding income in both periods constant, what happens if the interest rate changes?

\[u''(C_t) \frac{\partial C_t}{\partial r_t} + (1 + r_t)^2 \beta u''(C_{t+1}) \frac{\partial C_t}{\partial r_t} + \beta u'(C_{t+1}) - (1 + r_t) \beta (Y_t - C_t) u''(C_{t+1}) = 0 \]

Solving this, we find

\[\frac{\partial C_t}{\partial r_t} = \frac{\beta u'(C_{t+1}) + (1 + r_t) \beta (Y_t - C_t) u''(C_{t+1})}{u''(C_t) + (1 + r_t)^2 \beta u''(C_{t+1})} \]

The effect on consumption is ambiguous. We can divide this derivative into parts the book calls the substitution effect and the income effect:

Substitution effect:
\[
\left. \frac{\partial C_t}{\partial r_t} \right|_{Substitution} = \frac{\beta u'(C_{t+1})}{u''(C_t) + (1 + r_t)^2 \beta u''(C_{t+1})} < 0
\]

Income effect:

\[
\left. \frac{\partial C_t}{\partial r_t} \right|_{Income} = \frac{(1 + r_t) \beta (Y_t - C_t) u''(C_{t+1})}{u''(C_t) + (1 + r_t)^2 \beta u''(C_{t+1})}
\]

which is > 0 if household is a saver at time \(t \), so \(Y_t - C_t > 0 \)
but < 0 if household is a borrower at time \(t \), so \(Y_t - C_t < 0 \)

We will assume overall the substitution effect dominates.
Graphical Analysis: Indifference Curves and Budget Lines

Equation of budget line: $C_{t+1} = (1 + r_t)(Y_t - C_t) + Y_{t+1}$
Indifference curves are combinations of current and future consumption that hold utility at a constant level:

\[U_0 = u(C_{0,t}) + \beta u(C_{0,t+1}) \]

Differentiate:

\[dU = u'(C_{0,t}) dC_t + \beta u'(C_{0,t+1}) dC_{t+1} \]

Since indifference curve holds utility constant, set \(dU = 0 \), and rearrange to get the equation for the slope of the indifference curve:

\[\frac{dC_{t+1}}{dC_t} = -\frac{u'(C_{0,t})}{\beta u'(C_{0,t+1})} \]
Figure 9.4: An Optimal Consumption Bundle

\[(1 + r_t)Y_t + Y_{t+1} \]

\[C_{t+1} \]

\[Y_{t+1} \]

\[C_{2,t+1} \]

\[C_{3,t+1} \]

\[C_{0,t+1} \]

\[C_{1,t+1} \]

\[Y_t \]

\[C_{0,t} \]

\[C_{3,t} \]

\[C_{2,t} \]

\[C_{1,t} \]

\[Y_t + \frac{Y_{t+1}}{1 + r_t} \]

\[U = U_2 \]

\[U = U_1 \]

\[U = U_0 \]

(0)

(1)

(2)

(3)
Figure 9.5: Increase in Y_t

The graph illustrates the increase in consumption (C_{t+1}) with respect to time (Y_t). The original endowment is marked by $Y_{0,t+1}$ and $C_{0,t+1}$, and the new endowment is shown by $Y_{1,t+1}$ and $C_{1,t+1}$. The diagram also highlights the original consumption bundle and the new consumption bundle.
Figure 9.6: Increase in Y_{t+1}
Figure 9.7: Increase in r_t and Pivot of the Budget Line

\[(1 + r_{1,t})Y_t + Y_{t+1} \]

\[(1 + r_{0,t})Y_t + Y_{t+1} \]

\[Y_t \]

\[Y_t + \frac{Y_{t+1}}{1 + r_{1,t}} \]

\[Y_t + \frac{Y_{t+1}}{1 + r_{0,t}} \]
Figure 9.8: Increase in r_t: Initially a Borrower

- Hypothetical bundle with new r_t on same indifference curve
- Original bundle
- New bundle
Figure 9.9: Increase in r_t: Initially a Saver
Table 9.1: Income and Substitution Effects of Higher r_t

<table>
<thead>
<tr>
<th></th>
<th>Substitution Effect</th>
<th>Income Effect</th>
<th>Total Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_t</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borrower</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Saver</td>
<td>-</td>
<td>+</td>
<td>?</td>
</tr>
<tr>
<td>C_{t+1}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borrower</td>
<td>+</td>
<td>-</td>
<td>?</td>
</tr>
<tr>
<td>Saver</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Assume the substitution effect dominates so

$$C_t = C^d(Y_t, Y_{t+1}, r_t)$$
Example: $u(C) = \ln(C)$

$$C_t = \frac{1}{1 + \beta} \left[Y_t + \frac{Y_{t+1}}{1 + r_t} \right]$$

$$\frac{\partial C_t}{\partial Y_t} = \frac{1}{1 + \beta}$$

$$\frac{\partial C_t}{\partial Y_{t+1}} = \frac{1}{1 + \beta} \frac{1}{1 + r_t}$$

$$\frac{\partial C_t}{\partial r_t} = -\frac{Y_{t+1}}{1 + \beta} (1 + r_t)^{-2}$$
Permanent Income Changes

Suppose that when Y_t rises, we know also that Y_{t+1} will increase the same amount. The income increase is permanent.

\[\frac{dC_t}{dY_t} = \frac{\partial C_t}{\partial Y_t} + \frac{\partial C_{t+1}}{\partial Y_{t+1}} > \frac{\partial C_t}{\partial Y_t}. \]

The effect of a permanent change in income is greater than the effect of a transitory change.

Similarly, a permanent cut in taxes has a larger effect on consumption than a transitory change, according to the model.
Taxes

Assume “lump-sum” taxes, which work just like a decrease in the household’s income:

\[
C_t + S_t \leq Y_t - T_t
\]

\[
C_{t+1} + S_{t+1} \leq Y_{t+1} - T_{t+1} + (1 + r_t) S_t
\]

\[
C_t + \frac{C_{t+1}}{1 + r_t} = Y_t - T_t + \frac{Y_{t+1} - T_{t+1}}{1 + r_t}
\]

Does the empirical evidence support the claim that a transitory tax cut has a smaller effect on consumption than a permanent tax cut?