Econ 702

Macroeconomics I

Charles Engel and Menzie Chinn

Spring 2020

Lecture 6: Optimal Consumption and Saving, part 1

The model of an optimizing household forms the basis for macroeconomic models of consumption and saving.

Dynamic
Two-period: Why?

Representative household
Periods t and $t+1$.

Household chooses $C_{t}, S_{t}, C_{t+1}, S_{t+1}$ given Y_{t}, Y_{t+1}, r_{t}
Exogenous vs. endogenous

Household's budget constraints:

$$
\begin{aligned}
C_{t}+S_{t} & \leq Y_{t} \\
C_{t+1}+S_{t+1} & \leq Y_{t+1}+\left(1+r_{t}\right) S_{t}
\end{aligned}
$$

Thes latter can be written as:

$$
C_{t+1}+S_{t+1}-S_{t} \leq Y_{t+1}+r_{t} S_{t}
$$

("saving" and "savings")

Under optimality, we will have $S_{t+1}=0$ and budget constraint will hold with equality.

We have then:

$$
\begin{aligned}
C_{t}+S_{t} & =Y_{t} \\
C_{t+1} & =Y_{t+1}+\left(1+r_{t}\right) S_{t}
\end{aligned}
$$

Solve out for S_{t} and rearrange to get a single constraint:

$$
C_{t}+\frac{C_{t+1}}{1+r_{t}}=Y_{t}+\frac{Y_{t+1}}{1+r_{t}}
$$

"present value" and "current value"

Households maximize

$$
U=u\left(C_{t}\right)+\beta u\left(C_{t+1}\right), \quad 0 \leq \beta<1
$$

Marginal utility is positive, always:

$$
u^{\prime}(\cdot)>0
$$

Diminishing marginal utility:

$$
u^{\prime \prime}\left(C_{t}\right)<0
$$

Some example utility functions:

$$
\begin{aligned}
& u\left(C_{t}\right)=\theta C_{t}, \quad \theta>0 \\
& u\left(C_{t}\right)=C_{t}-\frac{\theta}{2} C_{t}^{2}, \quad \theta>0 \\
& u\left(C_{t}\right)=\ln C_{t} \\
& u\left(C_{t}\right)=\frac{C_{t}^{1-\sigma}-1}{1-\sigma}=\frac{C_{t}^{1-\sigma}}{1-\sigma}-\frac{1}{1-\sigma}, \quad \sigma>0
\end{aligned}
$$

The first one is not concave (the second derivative is zero.)
The quadratic utility has the problem that the first derivative turns negative after a certain point.

Figure 9.1: Utility and Marginal Utility

The household's problem:

$$
\max _{C_{t}, C_{t+1}} U=u\left(C_{t}\right)+\beta u\left(C_{t+1}\right)
$$

subject to:

$$
C_{t}+\frac{C_{t+1}}{1+r_{t}}=Y_{t}+\frac{Y_{t+1}}{1+r_{t}}
$$

We could use a Lagrangian to set up this problem. Instead, we will substitute out for C_{t+1}. That is, we will solve for C_{t+1} from the constraint:

$$
C_{t+1}=\left(1+r_{t}\right)\left(Y_{t}-C_{t}\right)+Y_{t+1}
$$

Then substitute this solution into the utility function to get an unconstrained maximization problem:

$$
\max _{C_{t}} \quad U=u\left(C_{t}\right)+\beta u\left(\left(1+r_{t}\right)\left(Y_{t}-C_{t}\right)+Y_{t+1}\right)
$$

The first-order condition is:

$$
\frac{\partial U}{\partial C_{t}}=u^{\prime}\left(C_{t}\right)-\left(1+r_{t}\right) \beta u^{\prime}\left(\left(1+r_{t}\right)\left(Y_{t}-C_{t}\right)+Y_{t+1}\right)=0
$$

But since $C_{t+1}=\left(1+r_{t}\right)\left(Y_{t}-C_{t}\right)+Y_{t+1}$, we can write

$$
u^{\prime}\left(C_{t}\right)-\left(1+r_{t}\right) \beta u^{\prime}\left(C_{t+1}\right)=0
$$

It is intuitive to write this as:

$$
u^{\prime}\left(C_{t}\right)=\beta\left(1+r_{t}\right) u^{\prime}\left(C_{t+1}\right)
$$

This is called the Euler equation.
We could write this as the marginal rate of substitution equals the relative price (of consumption at time t relative to consumption at time $t+1$:

$$
\frac{u^{\prime}\left(C_{t}\right)}{\beta u^{\prime}\left(C_{t+1}\right)}=1+r_{t} .
$$

Example: $u(C)=\ln (C)$:

$$
\frac{1}{C_{t}}=\beta\left(1+r_{t}\right) \frac{1}{C_{t+1}}
$$

or

$$
\frac{C_{t+1}}{C_{t}}=\beta\left(1+r_{t}\right)
$$

Example: $u(C)=\frac{1}{1-\sigma} C^{1-\sigma}$

$$
C_{t}^{-\sigma}=\beta\left(1+r_{t}\right) C_{t+1}^{-\sigma}
$$

We get in this case, approximately, if we use

$$
\ln \left(1+r_{t}\right)=r_{t}
$$

that

$$
\ln C_{t+1}-\ln C_{t}=\frac{1}{\sigma} \ln \beta+\frac{1}{\sigma} r_{t} .
$$

How consumption changes with income and interest rates
We will do this algebraically first, then graphically.
We had the first-order condition:

$$
u^{\prime}\left(C_{t}\right)-\left(1+r_{t}\right) \beta u^{\prime}\left(\left(1+r_{t}\right)\left(Y_{t}-C_{t}\right)+Y_{t+1}\right)=0
$$

Take the derivatives. First, holding r_{t} and Y_{t+1} constant, find $\frac{\partial C_{t}}{\partial Y_{t}}$:
$u^{\prime \prime}\left(C_{t}\right) \frac{\partial C_{t}}{\partial Y_{t}}+\left(1+r_{t}\right)^{2} \beta u^{\prime \prime}\left(C_{t+1}\right) \frac{\partial C_{t}}{\partial Y_{t}}-\left(1+r_{t}\right)^{2} \beta u^{\prime \prime}\left(C_{t+1}\right)=0$.
Solve to find: $\frac{\partial C_{t}}{\partial Y_{t}}=\frac{\left(1+r_{t}\right)^{2} \beta u^{\prime \prime}\left(C_{t+1}\right)}{u^{\prime \prime}\left(C_{t}\right)+\left(1+r_{t}\right)^{2} \beta u^{\prime \prime}\left(C_{t+1}\right)}>0$

We see an increase in current income will increase consumption. But notice that $0<\frac{\partial C_{t}}{\partial Y_{t}}<1$. When current income increases, current consumption rises, but so does saving.

Suppose we learn at time t that Y_{t+1} will change. Now hold r_{t} and Y_{t} constant.

We find: $u^{\prime \prime}\left(C_{t}\right) \frac{\partial C_{t}}{\partial Y_{t+1}}+\left(1+r_{t}\right)^{2} \beta u^{\prime \prime}\left(C_{t+1}\right) \frac{\partial C_{t}}{\partial Y_{t+1}}-\left(1+r_{t}\right) u^{\prime \prime}\left(C_{t+1}\right)=0$.
This gives us $\frac{\partial C_{t}}{\partial Y_{t+1}}=\frac{\left(1+r_{t}\right) u^{\prime \prime}\left(C_{t+1}\right)}{u^{\prime \prime}\left(C_{t}\right)+\left(1+r_{t}\right)^{2} \beta u^{\prime \prime}\left(C_{t+1}\right)}>0$

The household can borrow at time t if Y_{t+1} rises enough.

Finally, holding income in both periods constant, what happens if the interest rate changes?

$$
\begin{aligned}
& u^{\prime \prime}\left(C_{t}\right) \frac{\partial C_{t}}{\partial r_{t}}+\left(1+r_{t}\right)^{2} \beta u^{\prime \prime}\left(C_{t+1}\right) \frac{\partial C_{t}}{\partial r_{t}} \\
& -\beta u^{\prime}\left(C_{t+1}\right)-\left(1+r_{t}\right) \beta\left(Y_{t}-C_{t}\right) u^{\prime \prime}\left(C_{t+1}\right)=0
\end{aligned}
$$

Solving this, we find

$$
\frac{\partial C_{t}}{\partial r_{t}}=\frac{\beta u^{\prime}\left(C_{t+1}\right)+\left(1+r_{t}\right) \beta\left(Y_{t}-C_{t}\right) u^{\prime \prime}\left(C_{t+1}\right)}{u^{\prime \prime}\left(C_{t}\right)+\left(1+r_{t}\right)^{2} \beta u^{\prime \prime}\left(C_{t+1}\right)}
$$

The effect on consumption is ambiguous. We can divide this derivative into parts the book calls the substitution effect and the income effect:
Substitution effect:

$$
\left.\frac{\partial C_{t}}{\partial r_{t}}\right|_{\text {Substitution }}=\frac{\beta u^{\prime}\left(C_{t+1}\right)}{u^{\prime \prime}\left(C_{t}\right)+\left(1+r_{t}\right)^{2} \beta u^{\prime \prime}\left(C_{t+1}\right)}<0
$$

Income effect:

$$
\left.\frac{\partial C_{t}}{\partial r_{t}}\right|_{\text {Income }}=\frac{\left(1+r_{t}\right) \beta\left(Y_{t}-C_{t}\right) u^{\prime \prime}\left(C_{t+1}\right)}{u^{\prime \prime}\left(C_{t}\right)+\left(1+r_{t}\right)^{2} \beta u^{\prime \prime}\left(C_{t+1}\right)}
$$

which is >0 if household is a saver at time t, so $Y_{t}-C_{t}>0$ but <0 if household is a borrower at time t, so $Y_{t}-C_{t}<0$

We will assume overall the substitution effect dominates.

Graphical Analysis: Indifference Curves and Budget Lines

Equation of budget line: $C_{t+1}=\left(1+r_{t}\right)\left(Y_{t}-C_{t}\right)+Y_{t+1}$

Indifference curves are combinations of current and future consumption that hold utility at a constant level:

$$
U_{0}=u\left(C_{0, t}\right)+\beta u\left(C_{0, t+1}\right)
$$

Differentiate:

$$
d U=u^{\prime}\left(C_{0, t}\right) d C_{t}+\beta u^{\prime}\left(C_{0, t+1}\right) d C_{t+1}
$$

Since indifference curve holds utility constant, set $d U=0$, and rearrange to get the equation for the slope of the indifference curve:

$$
\frac{d C_{t+1}}{d C_{t}}=-\frac{u^{\prime}\left(C_{0, t}\right)}{\beta u^{\prime}\left(C_{0, t+1}\right)}
$$

Figure 9.4: An Optimal Consumption Bundle

Figure 9.5: Increase in Y_{t}

Figure 9.6: Increase in Y_{t+1}

Figure 9.7: Increase in r_{t} and Pivot of the Budget Line

Figure 9.8: Increase in r_{t} : Initially a Borrower

Figure 9.9: Increase in r_{t} : Initially a Saver

Table 9.1: Income and Substitution Effects of Higher r_{t}

	Substitution Effect	Income Effect	Total Effect
C_{t}			
Borrower	-	-	-
Saver	-	+	$?$
C_{t+1}			
Borrower	+	-	$?$
Saver	+	+	+

Assume the substitution effect dominates so

$$
C_{t}=C^{d}\left(Y_{t}, Y_{t+1}, r_{-}\right)
$$

Example: $u(C)=\ln (C)$

$$
\begin{aligned}
C_{t} & =\frac{1}{1+\beta}\left[Y_{t}+\frac{Y_{t+1}}{1+r_{t}}\right] \\
\frac{\partial C_{t}}{\partial Y_{t}} & =\frac{1}{1+\beta} \\
\frac{\partial C_{t}}{\partial Y_{t+1}} & =\frac{1}{1+\beta} \frac{1}{1+r_{t}} \\
\frac{\partial C_{t}}{\partial r_{t}} & =-\frac{Y_{t+1}}{1+\beta}\left(1+r_{t}\right)^{-2}
\end{aligned}
$$

Permanent Income Changes

Suppose that when Y_{t} rises, we know also that Y_{t+1} will increase the same amount. The income increase is permanent.

$$
\frac{d C_{t}}{d Y_{t}}=\frac{\partial C_{t}}{\partial Y_{t}}+\frac{\partial C_{t+1}}{\partial Y_{t+1}}>\frac{\partial C_{t}}{\partial Y_{t}}
$$

The effect of a permanent change in income is greater than the effect of a transitory change.

Similarly, a permanent cut in taxes has a larger effect on consumption than a transitory change, according to the model.

Taxes

Assume "lump-sum" taxes, which work just like a decrease in the household's income:

$$
\begin{aligned}
& C_{t}+S_{t} \leq Y_{t}-T_{t} \\
& C_{t+1}+S_{t+1} \leq Y_{t+1}-T_{t+1}+\left(1+r_{t}\right) S_{t} \\
& C_{t}+\frac{C_{t+1}}{1+r_{t}}=Y_{t}-T_{t}+\frac{Y_{t+1}-T_{t+1}}{1+r_{t}}
\end{aligned}
$$

Does the empirical evidence support the claim that a transitory tax cut has a smaller effect on consumption than a permanent tax cut?

