Econ 702

Macroeconomics I

Charles Engel and Menzie Chinn

Spring 2020

Lecture 10: "Shocks" in the Neoclassical Model

Full Model

$$C_{t} = C^{d}(Y_{t} - G_{t}, Y_{t+1} - G_{t+1}, r_{t})$$

$$N_{t} = N^{s}(w_{t}, \theta_{t})$$

$$N_{t} = N^{d}(w_{t}, A_{t}, K_{t})$$

$$I_{t} = I^{d}(r_{t}, A_{t+1}, K_{t})$$

$$Y_{t} = A_{t}F(K_{t}, N_{t})$$

$$Y_{t} = C_{t} + I_{t} + G_{t}$$

$$M_{t} = P_{t}M^{d}(r_{t} + \pi^{e}_{t+1}, Y_{t})$$

$$r_{t} = i_{t} - \pi^{e}_{t+1}$$

Endogenous: $C_t, I_t, Y_t, N_t, r_t, w_t, P_t, i_t$ Exogenous: $A_t, A_{t+1}, G_t, G_{t+1}, \theta_t, M_t, \pi_{t+1}^e$ We will look at effects of shocks to A_t, A_{t+1}, G_t, M_t and π_{t+1}^e . We'll leave shocks to G_{t+1} and θ_t for homework.

We will find that only shocks to A_t (and θ_t) influence Y_t . In the neoclassical model, output is determined entirely by the productive capacity of firms, and the supply of labor.

 A_{t+1} influences output in period t+1 (that is, Y_{t+1} .)

Variables that influence demand in this model, G_t, M_t and π_{t+1}^e , do not influence Y_t .

All these exogenous variables affect the price level, P_t .

Medium-Run Versus Short-Run Models

In the medium run, P_t adjusts fully to shocks to demand coming from shocks to G_t , M_t and π_{t+1}^e . Y_t is not affected by changes in demand because it is determined entirely on the supply side.

In the short run, in the simplest version of the model, P_t does not adjust at all to shocks to any exogenous variable. Changes in G_t, M_t and π_{t+1}^e affect output, Y_t , instead of prices in the short run.

If there is some adjustment of prices, but not full adjustment of prices, then changes in all of the exogenous variables affect P_t and Y_t .

Future Output

You may have noticed that there is one variables, Y_{t+1} , that we have not listed as either exogenous or endogenous.

We will assume that the only exogenous variable in our list that Y_{t+1} responds to is A_{t+1} . We assume it responds exactly as Y_t responds to A_t .

That may seem odd. Most of our shocks have an effect on I_t . And if I_t changes, then so will K_{t+1} . But we assume that in the medium run, the amount of new net investment is so small that it barely changes K_{t+1} and therefore has a negligible effect on Y_{t+1} .

Effects of Changes in Productivity

When A_t rises, there is a direct effect on output: $Y_t = A_t F(K_t, N_t)$.

Also, labor demand rises because MPL rises: $MPL_t = A_t F_N(K_t, N_t)$.

Output rises because of both effects.

 Y_t is determined by the supply side. $C_t + I_t + G_t = Y_t$ in equilibrium, so $C_t + I_t$ must rise (G_t is exogenous.)

What makes $C_t + I_t$ rise? A drop in the real interest rate, r_t .

What Happens to Nominal Price Level?

Figure 18.4: Increase in A_t : The Money Market

Increase in Future Productivity

An increase in A_{t+1} does not change current output, but it does increase Y_{t+1} .

Because Y_{t+1} goes up, current consumption, C_t , rises.

Also, investment in period *t* depends on the MPK in period t+1, which rises when A_{t+1} goes up: $MPK_{t+1} = A_{t+1}F_K(K_{t+1}, N_{t+1})$.

The direct effect on an increase in A_{t+1} is to make C_t and I_t increase. But since $C_t + I_t + G_t = Y_t$ something must change to bring $C_t + I_t$ back down. What is it? An increase in r_t .

In the end, $C_t + I_t$ is unchanged, but we cannot say whether C_t and I_t individually go up or down.

Figure 18.5: Increase in A_{t+1}

How do Prices Change?

Figure 18.6: Increase in A_{t+1} : The Money Market

Increase in Government Spending

Remember, Y_t does not change.

Consumption, C_t , falls because taxes must be raised either in period t or t+1 to pay for the government spending. Recall that from Ricardian equivalence, the present value of after-tax income depends only on how much government spends, not when it taxes:

$$Y_t - G_t + \frac{Y_{t+1} - G_{t+1}}{1 + r_t}$$

But C_t falls less than one-for-one with the increase in government spending (the MPC is less than one.)

So the direct effect is that $C_t + G_t$ rises.

But $C_t + I_t + G_t = Y_t$, and Y_t does not change. It must be the case that something works to make $C_t + I_t$ fall to offset the initial increase in $C_t + G_t$.

There is an increase in r_t .

Note that in the end, C_t falls because after-tax income falls and because r_t increases. And I_t falls because r_t increases.

The increase in G_t ends up being exactly offset by a drop in $C_t + I_t$ so that $C_t + I_t + G_t$ does not change. We say that the government spending increase "crowds out" consumption and investment spending.

The government spending "multiplier" is zero!

Figure 18.7: Increase in ${\cal G}_t$

How do Prices Change?

Figure 18.8: Increase in G_t : The Money Market

An Increase in the Money Supply

Figure 18.9: Increase in M_t

An Increase in Inflation Expectations

