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Notes on the growth model with optimal consumption. 

 

 In Chapter 9, we derived the consumption Euler equation. (See equation 9.22). There we 

found that the marginal rate of substitution between consumption at time t and consumption at 

time 1t +  is equal to the gross rate of return, 1 tr+ , from saving at time t: 
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That equation was derived for a person that was living only two periods, but the intuition of that 

condition tells us that it would hold more generally for someone that lives a much longer life. In 

this model, we will assume that the consumer is infinitely-lived. Obviously that is not a realistic 

assumption, but it is made for convenience. Equation (1) says that if we give up one unit of 

consumption in period t in order to get one unit of consumption in period 1t + , the ratio of the 

marginal utilities of period t and 1t +  should equal the gross return on consumption. When a 

person gives up a unit of consumption at time t, they lose ( )tu c  in marginal utility. Each unit of 

marginal utility that they gain in period 1t +  is worth ( )1tu c +
  units of marginal utility today. 

Since the saver earns 1 tr+  on each unit saved, the marginal utility gain from saving one unit is 

( ) ( )11 t tr u c +
+ . The consumer saves additional units of consumption at time t until the 

marginal utility loss of the next unit of consumption given up just equals the marginal utility gain 

from increasing consumption at 1t + . 

 

 Keep in mind that 0 1  .   is the “utility discount factor”, the weight that the 

consumer puts on utility of consumption in period 1t +  relative to utility in period t. The 

consumer prefers consumption sooner rather than later, which is why we assume 1  . For 

example, thinking about it at time t, the utility that the consumer gets from an ice cream cone 

postponed for three months (which may be one time period in our model) might be only 0.99 

times the utility that she would feel if she could have the ice cream today.  

 

 In these notes, we will assume that utility is logarithmic: ( ) ( )lnt tu c c= . Then we can 

write the condition (1) as: 

 

(2)  ( )1 1t
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c
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 We will assume that equation (2) determines the consumption/saving decision in the 

optimizing version of the Solow growth model. That is, this equation replaces the equation we 

had before, which stated that consumption was a constant fraction of income: ( )1t tc s y= − . By 

saying that equation is replaced, we mean it is not an equation of the model. 
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 In the Solow growth model, saving takes place in the form of capital accumulation. 

Households own capital which they rent out to firms. If a household saves a unit of capital at 

time t, the capital is put to productive use at time 1t + . At 1t + , the household can rent that unit 

of capital to the firm, and earn a rent equal to 
1tR +
. The return to saving at time t comes from the 

rental of the capital at time 1t + . So, in the Solow model, 
1tR +
 is the return to saving – it is what 

we have called 
tr  above. We can write this version of equation (2): 
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 Otherwise, let’s take the rest of the Solow model as before, with the Cobb-Douglas 

production function. We derived the dynamic equation for accumulation of capital per worker, 

which was given by: 

 

(4)  ( )1

1 1t t t t tK AK N c K  +

+ = − + − . 

 

Recall that the equation says that capital in period 1t +  is equal to the amount of new saving in 

period t, plus the undepreciated capital carried over from period t. New saving is equal to output 

minus consumption: 1

t t tAK N c + − . As before, let 
tk  be capital per worker, but let’s assume the 

number of workers is held constant, and measure the number in units such that 1tN = . That 

means 
t tK k= . Also, to keep the model relatively simple, assume that capital does not 

depreciate: 0 = .  

 

 We can write the capital accumulation equation (4) as: 

 

(5) 
1t t t tk k Ak c

+ − = −  

 

 Then, as we derived in our chapter on the basic Solow model, 

 

(6) 1

t tR Ak −= .  

 

 That allows us to write equation (3) as: 

 

(7) ( )11
11t
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 Equations (5) and (7) are the dynamic equations of the model that, together, show how 

consumption and capital evolve over time. Unlike the basic Solow model, we cannot collapse the 
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dynamics of consumption and capital accumulation into a single equation. In the basic Solow 

model, consumption depended only on current output per worker, which in turn depended only 

on current capital per worker, so we could substitute out 
tc  in equation (5) as a function of 

tk  

and arrive at a dynamic equation for 
1tk +
 and 

tk . Instead, in this model, the growth rate of 

consumption, which relates 
1tc +
 to 

tc , depends on the return to capital at time 1t + , which in turn 

depends on capital per worker at time 1t + . We need both equations (5) and (7) to analyze the 

dynamics. 

 

Steady State 

 

  

 This model has a steady state in which consumption and capital per worker are constant. 

For consumption, being in the steady state means 1 1t

t

c

c

+ = . Then, imposing this condition onto 

equation (7), we get: 
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*k  is the steady-state capital per worker. Equation (8) can be solved to find: 
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 Equation (9) is an important equation because it tells us that the long-run capital per 

worker in the optimizing Solow model depends positively on three parameters: total factor 

productivity, A; the utility discount factor,  ; and, capital’s weight   in the Cobb-Douglas 

production function. As we can see from equation (6), higher total factor productivity or a 

greater share for capital ( ) increase the return to saving. Households have a greater incentive to 

save because the rental rate on capital is higher, the higher are A and  . 

 

 For any given rental rate, households that are more patient will save more. “Patient” 

households are ones that put more weight on utility of future consumption. They have a higher 

 . From the Euler equation (7), we see that more patient households will put off consumption 

today (lower 
tc ) in order to get more consumption in the future (higher 

1tc +
.) 

 

 Higher capital per worker in the steady state will imply higher output per worker and 

higher consumption in the steady state. This can be seen by setting 
1 0t tk k+ − =  in equation (5). 

We find: 
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 Higher productivity (A), greater “patience” (higher  ), and a greater capital share ( ), 

lead to higher consumption and income in the long run. 

 

 These equations characterize the steady state of the model, but do not tell us anything 

about the dynamic paths of consumption, capital or output. We turn to that next. 

 

Dynamics 

  

We can look at dynamics in a “phase diagram”. Let’s first consider consumption dynamics. We 

would like to understand how consumption evolves at a point in time t, given the capital stock 

that we enter into period t with.  
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 We know that when *

tk k= , that consumption is not changing, 
1t tc c+ = . That conclusion 

follows from equation (7) and our analysis of the steady state. On the graph above, the set of 

points where consumption is not changing over time is graphed by the vertical line rising from 

the point where *

tk k= . That line is labeled 
1t tc c+ = , indicating that along that line, consumption 

does not change over time. 

 

 For points off that line, where *

tk k , it follows logically that consumption is changing, 

so 
1t tc c+  . For some levels of capital 

tk , we’ll find that consumption is rising, 
1t tc c+  . For 

other values of 
tk , we will find that consumption is falling, 

1t tc c+  . 

 

 The graph above indicates the region in which consumption is rising, 
1t tc c+  , with an 

upward pointing arrow to indicate that the variable on the vertical axis, 
tc , is increasing in that 

region. Likewise, the region in which consumption is falling, 
1t tc c+  , is marked with a 

downward pointing arrow to indicate that the variable on the vertical axis, 
tc , is decreasing in 

that region.  

 

 The graph indicates that when *

tk k , consumption is increasing. Why is that the case? 

When *

tk k , we have that the rental rate to capital is higher than 
*R . That is, if *

tk k , then 

1 * 1 *

t tR Ak Ak R  − −=  = . This follows because of diminishing marginal productivity. That is, 

we can see that ( ) 21 0t
t

t

dR
Ak

dk

  −= −   because 0 1  . So when *

tk k , we have 

1 * 1

tAk Ak  − − , which gives us *

tR R . In simple words, when there is less capital, the 

return to capital is higher. 

 

 In turn, if *

tR R , then it must be the case that ( ) ( )*1 1tR R +  + . Equation (3) tells 

us that ( )*

1

1t

t

C
R

C


−

= + . When ( )*1 1R + = , consumption does not grow, 
1

1t

t

C

C −

= . It follows 

that if ( ) ( )*1 1tR R +  + , we must have 
1

1t

t

C

C −

 . Consumption is growing.  

 

 The logic tells us when the capital per worker is below the steady state level, the rental 

rate of capital is higher than in the steady state because of diminishing marginal product of 

capital. In this case, households have an incentive to save, and consumption will be rising over 

time.  

 

 Similarly, when *

tk k , consumption is falling. 
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 The next graph shows us how capital changes over time. From equation (5), when 

consumption equals output, 
t tc Ak= , capital is constant, 

1t tk k+ = . The line 
t tc Ak=  is graphed 

below, and labeled 
1t tk k+ = . Along that line, the capital stock is constant. For a given level of 

capital, if 
t tc Ak , then the capital stock is not constant, 

1t tk k+  . That is, for points on the 

graph that are not along the curve where 
t tc Ak= , the capital stock must be changing over time 

– either rising or falling. 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 
  

c 

k 

1t tk k+ =  
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 In the graph, points that lie above the curve 
t tc Ak=  are points where 

t tc Ak . But if 

t tc Ak , then consumption is greater than output, so the capital stock must be falling. That is, 

from equation (5), 
1t t t tk k Ak c

+ − = − , so if 
t tc Ak , then we must have 

1 0t tk k+ −  . This is 

indicated on the graph by leftward pointing arrows in the region in which 
t tc Ak . These 

arrows indicate that the variable on the horizontal axis, 
tk , is falling in this region. Similarly, in 

the region in which 
t tc Ak , capital is rising, indicated by rightward pointing arrows. 

 

 The next graph puts the previous two graphs together to indicate the direction of motion 

for consumption and capital. 
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 The graph divides the space into four quadrants. The arrows in each quadrant show the 

direction of motion of consumption and the capital stock in that quadrant. 

 

 Take, for example, the upper-left-hand quadrant. In that area, consumption is rising, and 

the capital stock is falling. Clearly, in that region, both consumption and capital are always 

moving away from the steady state. There is no way to reverse direction and head toward the 

steady state if 
tc  and 

tk  are in that region. The same is true for the lower-right-hand quadrant. 

 

 More interesting are the upper-right-hand and lower-left-hand quadrants.  
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 As we can see in the graph above, from the upper-right quadrant, there are a few 

possibilities. In that region, capital is falling and consumption is falling. It is possible that the 

path of consumption leads the economy into the upper-left quadrant, where capital rises and 

consumption falls, moving away from the steady state. Such a path is indicated by the curved 

arrow that crosses the 
1t tc c+ =  line from the upper-right to the upper-left quadrant. Another 

possibility is that consumption and capital fall and the economy enters the lower-right quadrant. 

One such path is indicated by the curved arrow that crosses the 
1t tk k+ =  from the upper-right to 

the lower-right quadrants. 

 

 Similarly, if the economy is in the lower-left quadrant, it might transit to the upper-left or 

lower-right quadrants.  

 

 But there is also exactly one path in the upper right quadrant, and one in the lower-left 

quadrant, that bring capital and consumption to the steady state as indicated here: 
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 Mathematically, there are an infinite number of paths for consumption and capital that 

satisfy the Euler equation for consumption and the capital accumulation equation. Those paths 

are all indicated in the phase diagram. But there is only one path that leads to the steady state. 

(Mathematically, this path is called the “saddle path”.) 

 

 The saddle path is the only path that satisfies equations (5) and (7) and also satisfied the 

lifetime budget constraint. The idea of the lifetime budget constraint was introduced in chapter 9 

(see equation 9.17). When the lifetime budget constraint holds with equality, that equation in the 

two-period model says: 

 

  1 1

1 1

1 1
t t t t

t t

c c y y
r r

+ ++ = +
+ +

. 

 

The left-hand-side of that equation is the present value of lifetime consumption, and the right-

hand-side is the present value of lifetime income. Chapter 9 discusses why we consider the case 

in which the lifetime budget constraint holds with equality. The present value of consumption 

cannot exceed the present value of income, because that would imply the person would die as a 

debtor and never pay back his debts. But the present value of consumption cannot be less than 

the present value of income, because the person would die without consuming all of his income, 

which would not be rational in this model. 

 

 In our case, since we have 
1t tR r+ = , if our model were a two-period model, we would 

write the lifetime budget constraint as: 

 

 1 1

1 1

1 1

1 1
t t t t

t t

c c y y
R R

+ +

+ +

+ = +
+ +

. 

 

But our model goes beyond two periods. What if we had a three-period model? How do we 

discount income earned in period 
2ty +
? In period 1t + , the present value of income earned in 

period 2t +  is equal to 2

2

1

1
t

t

y
R

+

++
. But we want the present value of that income in period t. To 

get the present value at time t of resources we have at time 1t + , we discount by 
11 tR ++ . So the 

present value at time t of 
2ty +
 is given by 

( )( )
2

1 2

1

1 1
t

t t

y
R R

+

+ ++ +
. In a three-period model, the 

lifetime budget constraint is given by: 

 

 
( )( ) ( )( )

1 2 1 2

1 1 2 1 1 2

1 1 1 1

1 1 1 1 1 1
t t t t t t

t t t t t t

c c c y y y
R R R R R R

+ + + +

+ + + + + +

+ + = + +
+ + + + + +

. 

 

 In our model, time goes on forever. We write the lifetime budget constraint as: 
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(12)  
( )( ) ( )( )

1 2 1 2

1 1 2 1 1 2

1 1 1 1

1 1 1 1 1 1
t t t t t t

t t t t t t

c c c y y y
R R R R R R

+ + + +

+ + + + + +

+ + + = + + +
+ + + + + +

 

 

where the triple dots represent the infinite discounted sums. 

 

 One can show mathematically (although not here!) that the only path for consumption 

and the capital stock that satisfies the capital accumulation equation, (5), the Euler equation, (7), 

and the lifetime budget constraint, (12), is the saddle path. The economy must be on the saddle 

path, where consumption and capital head toward the steady state. 
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The graph above shows how consumption and capital evolve if the initial capital stock is 

given by 
tk . The economy takes 

tk  as given when period t starts, because the capital stock at any 

time is determined by saving and capital accumulation in previous periods. Given 
tk , the 

consumption level must be on the saddle path in order for the economy to be following its 

optimal saving and capital accumulation plan, and satisfying its lifetime budget constraint. Over 

time, consumption and capital rise toward the steady state. 

 

Along the path toward the steady state, the economy is saving and accumulating capital. 

But its consumption is rising over time as income rises. 

 

If the economy had started with a capital stock greater than the steady state, then it would 

be on the saddle path to the right of the steady state. Consumption and capital would fall toward 

the steady state. 

 

The lessons we have learned so far from this model: 

 

• We still have a steady state with no long run growth! 

 

• Saving more this period increases the capital stock next period. 

 

• As the capital stock increases, the marginal product of capital falls. 

 

• Output approaches a steady state. 

 

 The optimal consumption path when below the steady state is to have high consumption 

growth initially. But as the marginal product of capital falls, consumption growth falls, and 

consumption growth approaches zero as R  goes toward 
1 



−
.  

 

 That is, if the economy starts with capital below the steady state, it has a high marginal 

product of capital, and high values of 
tR , relative to the steady state. Those high returns give 

households the incentive to save and accumulate capital. As capital accumulates, however, the 

marginal product of capital falls, and the incentive to save falls. In the long run, the incentive to 

save dies out as R  goes toward 
1 



−
. 

 

 As in the basic Solow model, it is the diminishing marginal product of capital that is 

responsible for growth dying out. In that model, growth died out because as the marginal product 

of capital falls, the marginal additions to capital through saving a constant share of output fall 



13 

 

until new investment just equals the amount of old capital that is depreciating. In this model, the 

diminishing marginal product of capital reduces the return to saving, and thereby diminishes the 

incentive to save, until finally according to the Euler equation, households are satisfied with their 

level of consumption and 
1

R




−
= . 

 

Changes in A and   

 

 How does the economy evolve when there is a permanent increase in TFP? We have seen 

already that steady state capital per worker and steady state consumption increase. How does the 

economy approach the new steady state? 

 

 We can answer that by asking how a change in A affects the phase diagram.  

 

 First, the equation for 
1t tc c+ =  is given by ( )

1

1
tk A  −= . (See the derivation of equation 

(9).) An increase in A clearly will shift the vertical line where 
1t tc c+ =  to the right.  

 

 The equation for the curve where 
1t tk k+ =  is given by 

t tc Ak= . An increase in A shifts 

that curve up. 

 

 The graph below shows the shifts in those two curves. The blue lines are the original 

curves, and the red lines are the new curves. 

 

 Also included is the new saddle path (the old saddle path is omitted to reduce clutter in 

the graph.) 

 

 Suppose the economy was starting at the old steady state when TFP increased. We see 

that consumption initially increases. But also saving increases because the increase in TFP has 

raised the return to capital. Along the transition toward the new steady state, the economy saves, 

but also enjoys increasing consumption. 

 

 Note that the path is drawn in such a way that consumption initially increases. That is not 

necessarily the case. It may be that the increase in the return to capital is sufficiently high that 

consumption falls initially when TFP increases. That is, we know 1t

t

c

c

+  becomes positive, but this 

might be accomplished not only by an increase in 
1tc +
, but also by a drop in 

tc . 
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 Next we consider a change in the patience of consumers – an increase in the utility 

discount factor,  . 

 

 We have seen that an increase in   increases the steady state capital per worker, output 

per worker and consumption. How is that accomplished? That is, what is the dynamic path 

toward the new steady state? 

 

 First, as we have seen, the equation for 
1t tc c+ =  is given by 

1

1

1
tk A






− 
=  

− 
. An 

increase in   will shift the vertical line where 
1t tc c+ =  to the right.  

 

 The equation for the curve where 
1t tk k+ =  is given by 

t tc Ak= . An increase in   has no 

effect on this line. 

 

 The graph below shows how the increase in patience affects the phase diagram. The red 

lines represent the new curves, though of course the curve for 
1t tk k+ =  is the same as the old one. 

 

 Suppose the economy is starting at the previous steady state, where the 
1t tk k+ =  curve 

intersects the blue vertical line. It is clear from the phase diagram that the increase in patience 

leads the economy initially to consume less. Consumption must drop initially so the economy is 

on the saddle path toward the new steady state. 

 

 Eventually consumption rises above its initial level as the economy accumulates capital 

and income increases. 

 

 In the basic Solow model, there was a question of whether the initial drop in consumption 

caused by an increase in the saving rate was optimal. In that model, consumption falls initially, 

and then rises in the long run. We can question whether such a trade-off improves utility or not – 

a short-run loss in consumption in exchange for a longer-run gain. There is one case where the 

tradeoff is clearly not worth it, which is when consumption is below the golden rule level of 

consumption. In that case, increasing the saving rate turns out to lower consumption both in the 

short run and in the long run. 

 

 In this model, there is no question about whether the tradeoff is a good one. That is 

because we have solved for the optimal path of consumption. The fact that it is “optimal” means 

it is the best path possible – the path that maximizes utility subject to the lifetime budget 

constraint, and subject to the equation that determines the accumulation of capital. 
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